Skip to main content
Log in

Theoretical design and evaluation of efficient small donor molecules for organic solar cells

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The development of high-efficiency photovoltaic devices is the need of time with increasing demand for energy. Herein, we designed seven small molecule donors (SMDs) with A-π-D-π-A backbones containing various acceptor groups for high-efficiency organic solar cells (OSCs). Molecular engineering was performed by substituting the acceptor group in the synthesized compound (BPR) with another highly efficient acceptor group to improve the photoelectric performance of the molecule.

Method

The photovoltaic, optoelectronic, and photophysical properties of the proposed compounds (BP1–BP7) were investigated in comparison to BPR using DFT and TD-DFT at MPW1PW91/6-311G(d,p) level of theory. All molecules we designed have red-shifted absorption spectra. The modification of the acceptor fragment of the BPR resulted in a reduced HOMO–LUMO energy gap; thus, the designed compounds (BP1–BP7) had improved optoelectronic responses as compared with the BPR molecule. Various key factors that are crucial for efficient SMDs such as exciton binding energy, frontier molecular orbitals (FMOs), absorption maximum (λmax), open circuit voltage (VOC), dipole moment (μ), excitation charge mobilities, and the transition density matrix of (BPR, BP1–BP7) have also been studied. Low reorganizational energy (holes and electrons) values provide high charge mobility, and all the designed compounds are efficient in this regard. Here, BP6 exhibits low excitation energy (1.66 eV), highest open circuit voltage (2.00 V), normalized VOC (77.23), and fill factor (0.931). Consequently, the superiority of the designed molecules advises experimenters to envision future developments in extremely effective OSC devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Farghali M, Osman AI, Mohamed IMA, Chen Z, Chen L, Ihara I, Yap P-S, Rooney DW (2023) Strategies to save energy in the context of the energy crisis: a review. Environ Chem Lett 21(4):2003–2039. https://doi.org/10.1007/s10311-023-01591-5

  2. Li B, Yang X, Li S, Yuan J (2023) Stable block copolymer single-material organic solar cells: progress and perspective. Energy Environ Sci. https://doi.org/10.1039/D2EE03082A

    Article  Google Scholar 

  3. Masood MT, Shah F (2012) Dilemma of third world countries-problems facing Pakistan energy crisis a case-in-point. Int J Bus Manag 7(5):231–246. https://doi.org/10.5539/ijbm.v7n5p231

    Article  Google Scholar 

  4. Fan L-S (2011) Chemical looping systems for fossil energy conversions. John Wiley & Sons, New Jersey

  5. Amin M, Shah HH, Fareed AG, Khan WU, Chung E, Zia A, Farooqi ZUR, Lee C (2022) Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int J Hydrog Energy 47(77):33112–33134. https://doi.org/10.1016/j.ijhydene.2022.07.172

    Article  CAS  Google Scholar 

  6. Okolie JA, Patra BR, Mukherjee A, Nanda S, Dalai AK, Kozinski JA (2021) Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. Int J Hydrog Energy 46(13):8885–8905. https://doi.org/10.1016/j.ijhydene.2021.01.014

    Article  CAS  Google Scholar 

  7. Fonteyn P, Lizin S, Maes W (2020) The evolution of the most important research topics in organic and perovskite solar cell research from 2008 to 2017: a bibliometric literature review using bibliographic coupling analysis. Sol Energy Mater Sol Cells 207:110325. https://doi.org/10.1016/j.solmat.2019.110325

    Article  CAS  Google Scholar 

  8. Seri M, Mercuri F, Ruani G, Feng Y, Li M, Xu Z-X, Muccini M (2021) Toward real setting applications of organic and perovskite solar cells: a comparative review. Energy Technol 9(5):2000901. https://doi.org/10.1002/ente.202000901

    Article  CAS  Google Scholar 

  9. Kumar P, Boukherroub R, Shankar K (2018) Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J Mater Chem A 6(27):12876–12931. https://doi.org/10.1039/C8TA02061B

    Article  CAS  Google Scholar 

  10. Zhu L, Zhang M, Zhong W, Leng S, Zhou G, Zou Y, Su X, Ding H, Gu P, Liu F (2021) Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. Energy Environ Sci 14(8):4341–4357. https://doi.org/10.1039/D1EE01220G

    Article  CAS  Google Scholar 

  11. Rafique S, Abdullah SM, Sulaiman K, Iwamoto M (2018) Fundamentals of bulk heterojunction organic solar cells: an overview of stability/degradation issues and strategies for improvement. Renew Sust Energ Rev 84:43–53. https://doi.org/10.1016/j.rser.2017.12.008

    Article  Google Scholar 

  12. Peng W, Zhang G, Shao L, Ma C, Zhang B, Chi W, Peng Q, Zhu W (2018) Simple-structured small molecule acceptors constructed by a weakly electron-deficient thiazolothiazole core for high-efficiency non-fullerene organic solar cells. J Mater Chem A 6(47):24267–24276. https://doi.org/10.1039/C8TA09370A

    Article  CAS  Google Scholar 

  13. Roncali J (2021) Single-material organic solar cells based on small molecule homojunctions: an outdated concept or a new challenge for the chemistry and physics of organic photovoltaics. Adv Energy Mater 11(47):2102987. https://doi.org/10.1002/aenm.202102987

    Article  CAS  Google Scholar 

  14. Walker B, Kim C, Nguyen T-Q (2011) Small molecule solution-processed bulk heterojunction solar cells. Chem Mater 23(3):470–482. https://doi.org/10.1021/cm102189g

    Article  CAS  Google Scholar 

  15. Sun C, Wu Z, Hu Z, Xiao J, Zhao W, Li H-W, Li Q-Y, Tsang S-W, Xu Y-X, Zhang K (2017) Interface design for high-efficiency non-fullerene polymer solar cells. Energy Environ Sci 10(8):1784–1791. https://doi.org/10.1039/C7EE00601B

    Article  CAS  Google Scholar 

  16. Li Y, Guo Q, Li Z, Pei J, Tian W (2010) Solution processable D-A small molecules for bulk-heterojunction solar cells. Energy Environ Sci 3(10):1427–1436. https://doi.org/10.1039/C003946B

    Article  CAS  Google Scholar 

  17. Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J (2016) Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv Mater 28(37):8283–8287. https://doi.org/10.1002/adma.201602642

    Article  CAS  PubMed  Google Scholar 

  18. Duan C, Huang F, Cao Y (2012) Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J Mater Chem 22(21):10416–10434. https://doi.org/10.1039/C2JM30470H

    Article  CAS  Google Scholar 

  19. Bronstein H, Nielsen CB, Schroeder BC, McCulloch I (2020) The role of chemical design in the performance of organic semiconductors. Nat Rev Chem 4(2):66–77. https://doi.org/10.1038/s41570-019-0152-9

    Article  CAS  PubMed  Google Scholar 

  20. Katubi KM, Saqib M, Rehman A, Murtaza S, Hussain S, Alrowaili Z, Al-Buriahi M (2023) Theoretical designing of small molecule donors for organic solar cells: analyzing the effect of molecular polarity through structural engineering at terminal position. J Phys Chem Lett 814:140349. https://doi.org/10.1016/j.cplett.2023.140349

    Article  CAS  Google Scholar 

  21. He Q, Ufimkin P, Aniés F, Hu X, Kafourou P, Rimmele M, Rapley CL, Ding B (2022) Molecular engineering of Y-series acceptors for nonfullerene organic solar cells. SusMat 2(5):591–606. https://doi.org/10.1002/sus2.82

    Article  CAS  Google Scholar 

  22. Tang A, Zhan C, Yao J, Zhou E (2017) Design of diketopyrrolopyrrole (DPP)-based small molecules for organic-solar-cell applications. Adv Mater 29(2):1600013. https://doi.org/10.1002/adma.201600013

    Article  CAS  Google Scholar 

  23. Polat I, Yılmaz S, Bacaksız E, Atasoy Y, Tomakin M (2014) Synthesis and fabrication of Mg-doped ZnO-based dye-synthesized solar cells. J Mater Sci Mater Electron 25:3173–3178. https://doi.org/10.1007/s10854-014-2000-5

    Article  CAS  Google Scholar 

  24. Al-Hossainy A, Thabet HK, Zoromba MS, Ibrahim A (2018) Facile synthesis and fabrication of a poly (ortho-anthranilic acid) emeraldine salt thin film for solar cell applications. New J Chem 42(12):10386–10395. https://doi.org/10.1039/C8NJ01204K

    Article  CAS  Google Scholar 

  25. Mahmood A, Irfan A, Wang J-L (2022) Machine learning for organic photovoltaic polymers: a minireview. Chin J Polym Sci 40(8):870–876. https://doi.org/10.1007/s10118-022-2782-5

    Article  CAS  Google Scholar 

  26. Mahmood A, Irfan A, Wang J-L (2022) Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J Mater Chem A 10(8):4170–4180. https://doi.org/10.1039/D1TA09762H

    Article  CAS  Google Scholar 

  27. Khalid M, Ali A, Abid S, Tahir MN, Khan MU, Ashfaq M, Imran M, Ahmad A (2020) Facile ultrasound-based synthesis, SC-XRD, DFT exploration of the substituted acyl-hydrazones: an experimental and theoretical slant towards supramolecular chemistry. ChemistrySelect 5(47):14844–14856. https://doi.org/10.1002/slct.202003589

    Article  CAS  Google Scholar 

  28. Sabir S, Hadia N, Iqbal J, Mehmood RF, Akram SJ, Khan MI, Shawky AM, Raheel M, Somaily H, Khera RA (2022) DFT molecular modeling of A2-D-A1-D-A2 type DF-PCIC based small molecules acceptors for organic photovoltaic cells. Chem Phys Lett 806:140026. https://doi.org/10.1016/j.cplett.2022.140026

    Article  CAS  Google Scholar 

  29. Mahmood A, HussainTahir M, Irfan A, Khalid B, Al-Sehemi AG (2015) Computational designing of triphenylamine dyes with broad and red-shifted absorption spectra for dye-sensitized solar cells using multi-thiophene rings in π-spacer. Bull Korean Chem Soc 36(11):2615–2620. https://doi.org/10.1002/bkcs.10526

    Article  CAS  Google Scholar 

  30. Ren X, Rinke P, Blum V, Wieferink J, Tkatchenko A, Sanfilippo A, Reuter K, Scheffler M (2012) Resolution-of-identity approach to Hartree-Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New J Phys 14(5):053020. https://doi.org/10.1088/1367-2630/14/5/053020

    Article  CAS  Google Scholar 

  31. Neese F (2009) Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord Chem Rev 253(5–6):526–563. https://doi.org/10.1016/j.ccr.2008.05.014

    Article  CAS  Google Scholar 

  32. Rashid EU, Hadia N, Iqbal J, Mehmood RF, Somaily H, Akram SJ, Shawky AM, Khan MI, Noor S, Khera RA (2022) Engineering of W-shaped benzodithiophenedione-based small molecular acceptors with improved optoelectronic properties for high efficiency organic solar cells. RSC Adv 12(34):21801–21820. https://doi.org/10.1039/D2RA03280E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iqbal M, Hussain A, Hussain R, Ayub K, Yar M, Rasool F, Imran M, Assiri MA, Sattar A (2023) Computer aided design and evaluation of benzothiadiazole based non-fullerene acceptors for organic solar cells applications. Sol Energy 260:34–48. https://doi.org/10.1016/j.solener.2023.05.021

    Article  CAS  Google Scholar 

  34. Chen X, Wang D, Wang Z, Li Y, Zhu H, Lu X, Chen W, Qiu H, Zhang Q (2021) 18.02% Efficiency ternary organic solar cells with a small-molecular donor third component. Chem Eng J 424:130397. https://doi.org/10.1016/j.cej.2021.130397

    Article  CAS  Google Scholar 

  35. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H (2016) Gaussian 16. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  36. Dennington R, Keith TA, Millam JM (2016) GaussView, version 6.0. 16. Semichem Inc., Shawnee Mission

  37. Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113(17):2019–2039. https://doi.org/10.1002/qua.24438

    Article  CAS  Google Scholar 

  38. Ganji MD, Tajbakhsh M, Kariminasab M, Alinezhad H (2016) Tuning the LUMO level of organic photovoltaic solar cells by conjugately fusing graphene flake: a DFT-B3LYP study. Physica E Low-dimens Syst Nanostruct 81:108–115. https://doi.org/10.1016/j.physe.2016.03.008

    Article  CAS  Google Scholar 

  39. Sakr MA, Sherbiny FF, El-Etrawy A-AS (2022) Hydrazone-based materials; DFT, TD-DFT, NBO analysis, Fukui function, MESP analysis, and solar cell applications. J Fluoresc 32(5):1857–1871. https://doi.org/10.1007/s10895-022-03000-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Janjua MRSA (2021) Quantum chemical design of D–π–A-type donor materials for highly efficient, photostable, and vacuum-processed organic solar cells. Energy Technol 9(10):2100489. https://doi.org/10.1002/ente.202100489

    Article  CAS  Google Scholar 

  41. Lee M-J, Balanay MP, Kim DH (2012) Molecular design of distorted push–pull porphyrins for dye-sensitized solar cells. Theor Chem Acc 131(9):1269. https://doi.org/10.1007/s00214-012-1269-9

    Article  CAS  Google Scholar 

  42. Raftani M, Abram T, Azaid A, Kacimi R, Bennani M, Bouachrine M (2021) Theoretical design of new organic compounds based on diketopyrrolopyrrole and phenyl for organic bulk heterojunction solar cell applications: DFT and TD-DFT study. Mater Today Proceed 45:7334–7343. https://doi.org/10.1016/j.matpr.2020.12.1228

    Article  CAS  Google Scholar 

  43. Bourass M, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouzzine SM, Bouachrine M (2016) DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chem Cent J 10(1):1–11. https://doi.org/10.1186/s13065-016-0216-6

    Article  CAS  Google Scholar 

  44. Zubair I, Khera RA, Naveed A, Shehzad RA, Iqbal J (2022) Designing the optoelectronic properties of BODIPY and their photovoltaic applications for high performance of organic solar cells by using computational approach. Mater Sci Semicond Process 148:106812. https://doi.org/10.1016/j.mssp.2022.106812

    Article  CAS  Google Scholar 

  45. Zhang Y, Cheng J, Deng W, Sun B, Liu Z, Yan L, Wang X, Xu B, Wang X (2020) Theoretical study of D-A′–π–A/D–π–A′–π–A triphenylamine and quinoline derivatives as sensitizers for dye-sensitized solar cells. RSC adv 10(29):17255–17265. https://doi.org/10.1039/D0RA01040E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hameed S, Gul S, Ans M, Bhatti IA, Khera RA, Iqbal J (2023) Designing Y-shaped two-dimensional (2D) polymer-based donor materials with addition of end group acceptors for organic and perovskite solar cells. J Mol Model 29(5):152. https://doi.org/10.1007/s00894-023-05556-x

    Article  CAS  PubMed  Google Scholar 

  47. Afzal Z, Hussain R, Khan MU, Khalid M, Iqbal J, Alvi MU, Adnan M, Ahmed M, Mehboob MY, Hussain M (2020) Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells. J Mol Model 26:1–17. https://doi.org/10.1007/s00894-020-04386-5

    Article  CAS  Google Scholar 

  48. Waqas M, Iqbal J, Mehmood RF, Akram SJ, Shawky AM, Raheel M, Rashid EU, Khera RA (2022) Impact of end-capped modification of MO-IDT based non-fullerene small molecule acceptors to improve the photovoltaic properties of organic solar cells. J Mol Graph Model 116:108255. https://doi.org/10.1016/j.jmgm.2022.108255

    Article  CAS  PubMed  Google Scholar 

  49. Sato H, Abd. Rahman SA, Yamada Y, Ishii H, Yoshida H (2022) Conduction band structure of high-mobility organic semiconductors and partially dressed polaron formation. Nat Mater 21(8):910–916. https://doi.org/10.1038/s41563-022-01308-z

    Article  CAS  PubMed  Google Scholar 

  50. Rafiq M, Salim M, Noreen S, Khera RA, Noor S, Yaqoob U, Iqbal J (2022) End-capped modification of dithienosilole based small donor molecules for high performance organic solar cells using DFT approach. J Mol Liq 345:118138. https://doi.org/10.1016/j.molliq.2021.118138

    Article  CAS  Google Scholar 

  51. Mamba S, Perry DS, Tsige M, Pellicane G (2021) Toward the rational design of organic solar photovoltaics: application of molecular structure methods to donor polymers. J Phys Chem A 125(50):10593–10603. https://doi.org/10.1021/acs.jpca.1c07091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gregg BA (2005) The photoconversion mechanism of excitonic solar cells. MRS Bull 30(1):20–22. https://doi.org/10.1557/mrs2005.3

    Article  CAS  Google Scholar 

  53. Xin J, Zhao H, Xue J, Seibt S, Collins BA, Ma W (2022) Solvent-induced polymorphism in non-fullerene-based organic solar cells. Sol RRL 6(12):2200819. https://doi.org/10.1002/solr.202200819

    Article  CAS  Google Scholar 

  54. Maqsood N, Altuijri R, El Maati LA, Ans M, Hossain I, Iqbal J (2023) Addition of acceptor moiety toward quinoxaline-based conjugated framework of chromophores for highly efficient organic solar cells. J Phys Chem Solids 181:111543. https://doi.org/10.1016/j.jpcs.2023.111543

    Article  CAS  Google Scholar 

  55. Afzal M, Naeem N, Iqbal S, Al-Buriahi M, Alfryyan N, Alrowaili Z, Iqbal J (2023) Rational design of dithieno [2, 3-D: 2ʹ, 3ʹ-Dʹ]-benzo [1, 2-B: 4, 5-Bʹ] dithiophene based small molecule donor for plausible performance organic solar cell. Opt Quantum Electron 55(1):2. https://doi.org/10.1007/s11082-022-04240-3

    Article  CAS  Google Scholar 

  56. Zahid S, Rasool A, Ans M, Akhter MS, Iqbal J, Al-Buriahi M, Alomairy S, Alrowaili Z (2022) Environmentally compatible and highly improved hole transport materials (HTMs) based on benzotrithiophene (BTT) skeleton for perovskite as well as narrow bandgap donors for organic solar cells. Sol Energy 231:793–808. https://doi.org/10.1016/j.solener.2021.12.010

    Article  CAS  Google Scholar 

  57. Rani M, Hadia N, Shawky AM, Mehmood RF, Hameed S, Zahid S, Iqbal J, Alatawi NS, Ahmed A, Khera RA (2023) Novel A-π-D-π-A type non-fullerene acceptors of dithienyl diketopyrropopyrrole derivatives to enhance organic photovoltaic applications: a DFT study. RSC Adv 13(3):1640–1658. https://doi.org/10.1039/D2RA07291B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Casanova-Páez M, Goerigk L (2021) Time-dependent long-range-corrected double-hybrid density functionals with spin-component and spin-opposite scaling: a comprehensive analysis of singlet–singlet and singlet–triplet excitation energies. J Chem Theory Comput 17(8):5165–5186. https://doi.org/10.1021/acs.jctc.1c00535

    Article  CAS  PubMed  Google Scholar 

  59. Humayun M, Ullah H, Cheng Z-E, Tahir AA, Luo W, Wang C (2022) Au surface plasmon resonance promoted charge transfer in Z-scheme system enables exceptional photocatalytic hydrogen evolution. Appl Catal B: Environ 310:121322. https://doi.org/10.1016/j.apcatb.2022.121322

    Article  CAS  Google Scholar 

  60. Hussain R, Adnan M, Irshad Z, Muhammad S, Khan MU, Lim J (2022) Environmentally compatible 3-dimensional star-shaped donor materials for efficient organic solar cells. Int J Energy Res 46(15):22145–22161. https://doi.org/10.1002/er.8617

    Article  CAS  Google Scholar 

  61. Atiq K, Adnan M, Muhammad S, Hussain R, Irshad Z, Khan MU (2023) Fused ring pyrrolo [3, 2-b] pyrrole-based tilde-shaped acceptor molecules for highly efficient organic solar cells. J Phys Chem Solids 176:111228. https://doi.org/10.1016/j.jpcs.2023.111228

    Article  CAS  Google Scholar 

  62. Manthina V, Correa Baena JP, Liu G, Agrios AG (2012) ZnO–TiO2 nanocomposite films for high light harvesting efficiency and fast electron transport in dye-sensitized solar cells. J Phys Chem C 116(45):23864–23870. https://doi.org/10.1021/jp304622d

    Article  CAS  Google Scholar 

  63. Mehboob MY, Hussain R, Khan MU, Adnan M, Umar A, Alvi MU, Ahmed M, Khalid M, Iqbal J, Akhtar MN (2020) Designing N-phenylaniline-triazol configured donor materials with promising optoelectronic properties for high-efficiency solar cells. Comput Theoret Chem 1186:112908. https://doi.org/10.1016/j.comptc.2020.112908

    Article  CAS  Google Scholar 

  64. Zhao H, Xue J, Wu H, Lin B, Cai Y, Zhou K, Yun D, Tang Z, Ma W (2023) High-performance green thick-film ternary organic solar cells enabled by crystallinity regulation. Adv Funct Mater 33(5):2210534. https://doi.org/10.1002/adfm.202210534

    Article  CAS  Google Scholar 

  65. Ko J, Kim J, Song HJ, Park Y, Kwak J, Lee C, Char K (2021) Effect of solvent on the interfacial crystallinity in sequentially processed organic solar cells. Adv Mater Interfaces 8(15):2100029. https://doi.org/10.1002/admi.202100029

    Article  CAS  Google Scholar 

  66. Guo L, Li Q, Ren J, Xu Y, Zhang J, Zhang K, Cai Y, Liu S, Huang F (2022) Halogenated thiophenes serve as solvent additives in mediating morphology and achieving efficient organic solar cells. Energy Environ Sci 15(12):5137–5148. https://doi.org/10.1039/D2EE02553A

    Article  CAS  Google Scholar 

  67. Khan MU, Khalid M, Arshad MN, Khan MN, Usman M, Ali A, Saifullah B (2020) Designing star-shaped subphthalocyanine-based acceptor materials with promising photovoltaic parameters for non-fullerene solar cells. ACS Omega 5(36):23039–23052. https://doi.org/10.1021/acsomega.0c02766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dindorkar SS, Patel RV, Yadav A (2022) Unravelling the interaction between boron nitride nanosheets and organic pesticides through density functional theory studies. Colloids Surf A: Physicochem Eng Asp 649:129550. https://doi.org/10.1016/j.colsurfa.2022.129550

    Article  CAS  Google Scholar 

  69. Khalid M, Shafiq I, Mahmood K, Hussain R, urRehman MF, Assiri MA, Imran M, Akram MS (2023) Effect of different end-capped donor moieties on non-fullerenes based non-covalently fused-ring derivatives for achieving high-performance NLO properties. Sci Rep 13(1):1395. https://doi.org/10.1038/s41598-023-28118-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hassan T, Adnan M, Hussain R, Hussain F, Khan MU (2023) Molecular engineering of Pyran-fused acceptor-donor-acceptor-type non-fullerene acceptors for highly efficient organic solar cells-A density functional theory approach. J Phys Org Chem 36(8). https://doi.org/10.1002/poc.4507

  71. Zhang W, Li QS, Li ZS (2022) Molecular engineering in perovskite solar cells: a computational study on 2-mercaptopyridine derivatives as surface passivators against water. Adv Mater Interfaces 9(6):2101881. https://doi.org/10.1002/admi.202101881

    Article  CAS  Google Scholar 

  72. Hassan T, Hussain R, Khan MU, Habiba U, Irshad Z, Adnan M, Lim J (2022) Development of non-fused acceptor materials with 3D-interpenetrated structure for stable and efficient organic solar cells. Mater Sci Semicond Process 151:107010. https://doi.org/10.1016/j.mssp.2022.107010

    Article  CAS  Google Scholar 

  73. Hussain R, Adnan M, Atiq K, Khan MU, Farooqi ZH, Iqbal J, Begum R (2023) Designing of silolothiophene-linked triphenylamine-based hole transporting materials for perovskites and donors for organic solar cells-a DFT study. Sol Energy 253:187–198. https://doi.org/10.1016/j.solener.2023.02.016

    Article  CAS  Google Scholar 

  74. Soto-Rojo R, Baldenebro-López J, Glossman-Mitnik D (2015) Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT. Phys Chem Chem Phys 17(21):14122–14129. https://doi.org/10.1039/C5CP01387A

    Article  CAS  PubMed  Google Scholar 

  75. Afolabi SO, Semire B, Akiode OK, Idowu MA (2022) Quantum study on the optoelectronic properties and chemical reactivity of phenoxazine-based organic photosensitizer for solar cell purposes. Theor Chem Acc 141(4):22. https://doi.org/10.1007/s00214-022-02882-w

    Article  CAS  Google Scholar 

  76. Kim HS, Seo JY, Park NG (2016) Material and device stability in perovskite solar cells. Chemsuschem 9(18):2528–2540. https://doi.org/10.1002/cssc.201600915

    Article  CAS  PubMed  Google Scholar 

  77. Mubarik A, Mahmood S, Rasool N, Hashmi MA, Ammar M, Mutahir S, Ali KG, Bilal M, Akhtar MN, Ashraf GA (2022) Computational study of benzothiazole derivatives for conformational, thermodynamic and spectroscopic features and their potential to act as antibacterials. Crystals 12(7):912. https://doi.org/10.3390/cryst12070912

    Article  CAS  Google Scholar 

  78. Jaffar K, Elqahtani ZM, Afzal QQ, Ans M, Riaz S, Tahir MA, Iqbal J, Mahmoud ZM, Alrowaili Z, Al-Buriahi M (2022) Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells. Polymer 245:124675. https://doi.org/10.1016/j.polymer.2022.124675

    Article  CAS  Google Scholar 

  79. Idrissi A, Elfakir Z, Atir R, Bouzakraoui S (2023) Small thiophene-based molecules with favorable properties as HTMs for perovskite solar cells or as active materials in organic solar cells. J Phys Chem Solids 181:111492. https://doi.org/10.1016/j.jpcs.2023.111492

    Article  CAS  Google Scholar 

  80. Luo C, Zhao Y, Wang X, Gao F, Zhao Q (2021) Self-induced type-I band alignment at surface grain boundaries for highly efficient and stable perovskite solar cells. Adv Mater 33(40):2103231. https://doi.org/10.1002/adma.202103231

    Article  CAS  Google Scholar 

  81. Ambreen M, Adnan M, Hussain R, Irshad Z, Yaqoob J, Khan MU, Zafar F (2023) Elucidating modelling of C=N-based carbazole-arylamine hole transporting materials for efficient organic and perovskite solar cells. J Phys Chem Solids 182. https://doi.org/10.1016/j.jpcs.2023.111581.

  82. Sivaraj S, Rathanasamy R, Kaliyannan GV, Panchal H, Jawad Alrubaie A, Musa Jaber M, Said Z, Memon S (2022) A comprehensive review on current performance, challenges and progress in thin-film solar cells. Energies 15(22):8688. https://doi.org/10.3390/en15228688

    Article  CAS  Google Scholar 

  83. Fan JC (1986) Theoretical temperature dependence of solar cell parameters. Sol Cells 17(2–3):309–315. https://doi.org/10.1016/0379-6787(86)90020-7

    Article  CAS  Google Scholar 

  84. Yamamoto S, Orimo A, Ohkita H, Benten H, Ito S (2012) Molecular understanding of the open-circuit voltage of polymer: fullerene solar cells. Adv Energy Mater 2(2):229–237. https://doi.org/10.1002/aenm.201100549

    Article  CAS  Google Scholar 

  85. He Y, Chen H-Y, Hou J, Li Y (2010) Indene–C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132(4):1377–1382. https://doi.org/10.1021/ja908602j

    Article  CAS  PubMed  Google Scholar 

  86. Qi B, Wang J (2013) Fill factor in organic solar cells. Phys Chem Chem Phys 15(23):8972–8982. https://doi.org/10.1039/C3CP51383A

    Article  CAS  PubMed  Google Scholar 

  87. Kiermasch D, Gil-Escrig L, Bolink HJ, Tvingstedt K (2019) Effects of masking on open-circuit voltage and fill factor in solar cells. Joule 3(1):16–26. https://doi.org/10.1016/j.joule.2018.10.016

    Article  CAS  Google Scholar 

  88. Bai F, Zhang J, Zeng A, Zhao H, Duan K, Yu H, Cheng K, Chai G, Chen Y, Liang J (2021) A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor. Joule 5(5):1231–1245. https://doi.org/10.1016/j.joule.2021.03.020

    Article  CAS  Google Scholar 

  89. Street R, Schoendorf M, Roy A, Lee J (2010) Interface state recombination in organic solar cells. Phys Rev B 81(20):205307. https://doi.org/10.1103/PhysRevB.81.205307

    Article  CAS  Google Scholar 

  90. Wagenpfahl A, Deibel C, Dyakonov V (2010) Organic solar cell efficiencies under the aspect of reduced surface recombination velocities. IEEE J Sel Top Quantum Electron 16(6):1759–1763. https://doi.org/10.1109/JSTQE.2010.2042142

    Article  CAS  Google Scholar 

  91. Gillett AJ, Privitera A, Dilmurat R, Karki A, Qian D, Pershin A, Londi G, Myers WK, Lee J, Yuan J (2021) The role of charge recombination to triplet excitons in organic solar cells. Nature 597(7878):666–671. https://doi.org/10.1038/s41586-021-03840-5

    Article  CAS  PubMed  Google Scholar 

  92. Jungbluth A, Kaienburg P, Riede M (2022) Charge transfer state characterization and voltage losses of organic solar cells. J Phy Mater 5(2):024002. https://doi.org/10.1088/2515-7639/ac44d9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AM: conceptualization, methodology, software, investigation, formal analysis, writing—original draft; FS: data curation, writing—original draft; H-RW: visualization, investigation, writing—review and editing; JJ: resources, supervision; software, validation; X-HJ: conceptualization, resources, supervision, writing—review and editing.

Corresponding author

Correspondence to Xue-Hai Ju.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubarik, A., Shafiq, F., Wang, HR. et al. Theoretical design and evaluation of efficient small donor molecules for organic solar cells. J Mol Model 29, 373 (2023). https://doi.org/10.1007/s00894-023-05782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05782-3

Keywords

Navigation