Skip to main content
Log in

Evidences of noncovalent interactions between indole and dichloromethane under different solvent conditions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2023

This article has been updated

Abstract

Context

Theoretical investigation of indole (IND) and its binary combination with dichloromethane (DC) in various solvents were computed to track the impact of molecular interactions on spectral characteristics. When transitioning from plain drug to complexes, different modes of IND display a substantial shift in peak location. The 3561.26 cm−1 band shows (~15.58 cm−1) red shift upon dilution. The geometry in various solvents was calculated using quantum chemical calculation utilizing density functional theory (DFT). The highest ALIE values are located at the indole skeleton and on complexation with DC, and the ring atoms become more electron rich. The atom-centered density matrix propagation (ADMP) molecular dynamic (MD) calculation shows that the geometries optimized through the DFT calculation match the global minima effectively. MD simulations indicate that indole is more stable in water and methanol.

Methods

DFT studies have been employed to study the interaction between indole and dichloromethane. CAM-B3LYP/6-311++G(d)(6D,7F) level of theory was employed using Gaussian 16 W suite. Quantum topological descriptors were discussed using quantum theory of atoms in molecules (QTAIM) with the help of Multiwfn software. Reduced density gradient (RDG) plot describes the nature of the interaction, while average local ionization energy (ALIE) explained the variation in local ionization energy of the molecular surface before and after complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

Change history

References

  1. Wilson KR, Tobin JG, Ankudinov AL, Rehr JJ, Saykally RJ (2000) Extended X-ray absorption fine structure from hydrogen atoms in water. Phys Rev Lett 85:4289–4292. https://doi.org/10.1103/PhysRevLett.85.4289

    Article  CAS  PubMed  Google Scholar 

  2. Morgenstern K, Nieminen J (2002) Intermolecular bond length of ice on Ag(111). Phys Rev Lett 88:066102–066105. https://doi.org/10.1103/PhysRevLett.88.066102

    Article  CAS  PubMed  Google Scholar 

  3. Finney JL, Hallbrucker A, Kohl I, Soper AK, Bowron DT (2002) Structures of high and low density amorphous ice by neutron diffraction. Phys Rev Lett 88:225503–225506. https://doi.org/10.1103/PhysRevLett.8.225503

    Article  CAS  PubMed  Google Scholar 

  4. Hubbard RE, Haider MK, Muhammad Hydrogen bonds in proteins: role and strength, In: Encyclopedia of life sciences (ELS). John Wiley and Sons, Ltd: Chichester. https://doi.org/10.1002/97800470015902.a0003011.pub2

  5. Scuderi D, Barbu-Debus KL, Zehnacker A (2011) The role of weak hydrogen bonds in chiral recognition. Phys Chem Chem Phys 13:17916–17929. https://doi.org/10.1039/C1CP20987F

    Article  CAS  PubMed  Google Scholar 

  6. Singh DK, Asthana BP, Srivastava SK (2012) Modeling the weak hydrogen bonding of pyrrole and dichloromethane through Raman and DFT study. J Mol Model 18:3541–3552. https://doi.org/10.1007/s00894-012-1355-x

    Article  CAS  PubMed  Google Scholar 

  7. Schlucker S, Singh RK, Asthana BP, Popp J, Kiefer W (2001) Hydrogen-bonded pyridine-water complexes studied by density functional theory and Raman spectroscopy. J Phys Chem A 105:9983–9989. https://doi.org/10.1021/jp0122272

    Article  CAS  Google Scholar 

  8. Singh S, Srivastava SK, Singh DK (2013) Raman scattering and DFT calculation used for analyzing the structural features of DMSO in water and methanol. RSC Adv 3:4381–4390. https://doi.org/10.1039/C3RA22730H

    Article  CAS  Google Scholar 

  9. Alves JEF, de Oliveira JF, deLima Souza TRC, de Moura RC, deCarvalho Junior LB, de Lima MCA, de Almeida SMV (2021) Novel indole-thiazole and indole-thiazolidinone derivatives as DNA groove binders. Int J Biol Macromol 170:622–635. https://doi.org/10.1016/j.ijbiomac.2020.12.153

    Article  CAS  PubMed  Google Scholar 

  10. Kochanoswka-Karamyan AJ, Hamann MT (2010) Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem Rev 110:4489–4497. https://doi.org/10.1021/cr900211p

    Article  CAS  Google Scholar 

  11. Zhang MZ, Chen Q, Yang GF (2015) A review on recent developments of indole containing antiviral agents. Eur J Med Chem 89:421–441. https://doi.org/10.1016/j.ejmech.2014.10.065

    Article  CAS  PubMed  Google Scholar 

  12. Chen M, Gan L, Lin S, Wang X, Li L, Li Y, Zhu C, Wang Y, Jiang B, Jiang J, Yang Y, Shi J (2012) Alkaloids from the root of Isatis indigotica. J Nat Prod 75:1167–1176. https://doi.org/10.1021/np3002833

    Article  CAS  PubMed  Google Scholar 

  13. de Sa Alves FR, Barreiro EJ, Fraga CAM (2009) From nature to drug discovery: the indole scaffold as a privileged structure. Mini Rev Med Chem 9:782–793. https://doi.org/10.2174/138955709788452649

    Article  PubMed  Google Scholar 

  14. Almagro L, Fernandez-Perez F, Pedreno MA (2015) Indole alkaloids from catharanthus roseus: bioproduction and their effect on human health. Molecules 20:2973–3000. https://doi.org/10.3390/molecules20022973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH (2013) Biomedical importance of indoles. Molecules 18:6620–6662. https://doi.org/10.3390/molecules18066620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361. https://doi.org/10.1016/j.cbpa.2010.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lal S, Snape TJ (2012) 2-Arylindoles: a privileged molecular scaffold with potent, broad ranging pharmacological activity. Curr Med Chem 19:4828–4837. https://doi.org/10.2174/092986712803341449

    Article  CAS  PubMed  Google Scholar 

  18. Patel DM, Sharma MG, Vala RM, Lagunes I, Puerta A, Padron JM, Rajani DP, Patel HM (2019) Hydroxyl alkyl ammonium ionic liquid assisted green and one port regioselective access to functionalized pyrazolodihydropyridine core and their pharmacological evaluation. Bioorg Chem 86:137–150. https://doi.org/10.1016/j.bioorg.2019.01.029

    Article  CAS  PubMed  Google Scholar 

  19. Shimazaki Y, Yajima T, Takani M, Yamauchi O (2009) Metal complexes involving indole rings: structures and effects of metal-indole interactions. Coord Chem Rev 253:479–492. https://doi.org/10.1016/j.ccr.2008.04.012

    Article  CAS  Google Scholar 

  20. Srivastava N, Banki BK (2003) Bismuth nitrate-catalyzed versatile Michael reactions. J Org Chem 68:2109–2114. https://doi.org/10.1021/jo026550s

    Article  CAS  PubMed  Google Scholar 

  21. Geetha DV, Hezam AF, Hussein EMY, Sridhar MA, Shaukath AD, Loknath NK (2019) Synthesis, elucidation, Hirshfeld surface analysis and DFT calculations of 4-chloro-N-[2-(2-1H-indol-3-yl-acetylamino)-pheny]-benzamide. J Mol Struct 1178:384–393. https://doi.org/10.1016/j.molstruc.2018.10.016

    Article  CAS  Google Scholar 

  22. Gupta PSS, Bhat HR, Biswal S, Rana MK (2020) Computer aided discovery of bis-indole derivatives as multitarget drugs against cancer and bacterial infections: DFT, docking, virtual screening and molecular dynamics studies. J Mol Liq 320:114375. https://doi.org/10.1016/j.molliq.2020.114375

    Article  CAS  Google Scholar 

  23. Gaussian 16, Revision A.03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT.

  24. GaussView, Version 6.1, Dennington R, Keith TA, Millam JM (2016) Semichem Inc., Shawnee Mission, KS.

  25. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  26. Mennucci B, Tomasi J (1997) Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106:5151–5158. https://doi.org/10.1063/1.473558

    Article  CAS  Google Scholar 

  27. Mohankumar T, Chandramohan V, Lalithamba HS, Jayaraj RL, Kumardhas P, Sivandam M, Hunday G, Vijayakumar R, Balakrishnan R, Manimaran D, Elangovan N (2020) Design and molecular dynamic investigations of 7,8-dihydroxyflavone derivatives as potential neuroprotective agents against alpha-synuclein. Sci Rep 10:599. https://doi.org/10.1038/s41598-020-57417-9

    Article  CAS  PubMed  Google Scholar 

  28. Kpemissi M, Potarniche AV, Lawson-Evi P, Metowogo K, Mella M, Dramane P, Taulescu M, Chandramohan V, Suhas DS, Puneeth TA, Kumar SV, Vlase L, Andrei S, Eklu-Gadgbeku K, Sevastre B, Veerapur VP (2020) Nephroprotective effect of combretum micranthum G.Don in nicotinamide-streptozotocin induced diabetic nephropathy in rats: in vivo and in silico experiments. J. Ethnopharmacol 261:113133. https://doi.org/10.1016/j.jep.2020.113133

    Article  CAS  PubMed  Google Scholar 

  29. Kpemissi M, Eklu-Gadegbeku K, Veerapur VP, Negru M, Taulescu M, Chandramohan V, Hiriyan J, Banakar SM, Nv T, Suhas DS, Puneeth TA, Vijayakumar S, Metowogo K, Akilkokou K (2019) Nephroprotective activity of combretum micranthum G. Don in cisplatin induced nephrotoxicity in rats: in vitro, in-vivo and in-silico experiments. Biomed Pharmacother 116:108961. https://doi.org/10.1106/j.biopha.2019.108961

    Article  CAS  PubMed  Google Scholar 

  30. Al-Otaibi JS, Mary YS, Mary YS, Panicker CY, Thomas R (2019) Cocrystals of pyrazinamide with p-toluenesulfonic and ferulic acids: DFT investigations and molecular docking studies. J Mol Struct 1175:916–926. https://doi.org/10.1016/j.molstruc.2018.08.055

    Article  CAS  Google Scholar 

  31. Mary YS, Mary YS (2021) Utilization of doped/undoped graphene quantum dots for ultrasensitive detection of duphaston, a SERS platform. Spectrochim Acta A 244:118865. https://doi.org/10.1016/j.saa.2020.118865

    Article  CAS  Google Scholar 

  32. Almuqrin AH, Al-Otaibi JS, Mary YS, Mary YS (2021) DFT computational study towards investigating psychotropic drugs, promazine and trifluoperazine adsorption on graphene, fullerene and carbon cyclic ring nano clusters. Spectrochim Acta A 246:119012. https://doi.org/10.1016/j.saa.2020.119012

    Article  CAS  Google Scholar 

  33. Al-Otaibi JS, Mary YS, Mary YS, Thomas R (2019) Quantum mechanical and photovoltaic studies on the cocrystals of hydrochlorothiazide with isonazid and malonamide. J Mol Struct 1197:719–726. https://doi.org/10.1016/j.molstruc.2019.07.110

    Article  CAS  Google Scholar 

  34. Al-Otaibi JS, Mary YS, Mary YS, Serdaroglu G (2021) Adsorption of adipic acid in Al/B-N/P nanocages: DFT investigations. J Mol Mod 27:113. https://doi.org/10.1007/s00894-021-04742-z

    Article  CAS  Google Scholar 

  35. Smitha M, Mary YS, Mary YS, Serdaroglu G, Chowdhury P, Rana M, Umamahesvari H, Sarojini BK, Mohan BJ, Pavithran R (2021) Modeling the DFT structural and reactivity studies of a pyrimidine-6-carboxylate derivative with reference to its wavefunction dependent, MD simulations and evaluation for potential antimicrobial activity. J Mol Struct 1237:130397. https://doi.org/10.1016/j.molstruc.2021.130397

    Article  CAS  Google Scholar 

  36. Al-Otaibi JS, Mary YS, Armakovic SJ, Thomas R (2020) Hybrid and bioactive cocrystals of pyrazinamide with hydroxybenzoic acids: detailed study of structure, spectroscopic characteristics, other potential applications and noncovalent interactions using SAPT. J Mol Struct 1202:127316. https://doi.org/10.1016/j.molstruc.2019.127316

    Article  CAS  Google Scholar 

  37. Mary YS, Mary YS, Armakovic S, Armakovic SJ, Yadav R, Celik I, Mane P, Chakraborty B (2021) Stability and reactivity study of bio-molecules brucine and colchicines towards electrophile and nucleophile attacks: insight from DFT and MD simulations. J Mol Liq 335:116192. https://doi.org/10.1016/j.molliq.2021.116192

    Article  CAS  Google Scholar 

  38. Mary YS, Mary YS, Bielenica A, Armakovic S, Armakovic SJ, Chandramohan V, Dammalli M (2021) Investigation of the reactivity properties of a thiourea derivative with anticancer activity by DFT and MD simulations. J Mol Model 27:217. https://doi.org/10.1007/s00894-021-04835-9

    Article  CAS  PubMed  Google Scholar 

  39. Mary YS, Mary YS, Ullah Z (2021) Computational study of sorbic acid drug adsorption onto coronene/fullerene/fullerene-like X12Y12 (X=Al, B and Y=N,P) nanocages: DFT and molecular docking investigations. J Cluster Sci. https://doi.org/10.1007/s10876-021-02106-4

  40. Mary YS, Mary YS, Armakovic S, Armakovic SJ, Yadav R, Celik I, Razavi R (2021) Investigation of reactive properties, adsorption on fullerene, DFT, Molecular dynamics simulation of an anthracene derivative targeting dihydrofolate reductase and human dUTPase. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1953602

  41. Mary YS, Mary YS, Chandramohan V, Kumar N, Van Alsenoy C, Gamberini MC (2020) DFT and MD simulations and molecular docking of cocrystals of octafluoro-1,4-diiodobutane with phenazine and acridine. Struct Chem 31:2525–2531. https://doi.org/10.1007/211224-020-01616-7

    Article  CAS  Google Scholar 

  42. Murray JS, Seminario JM, Politzer P, Sjoberg P (1990) Average local ionization energies computed on the surfaces of some strained molecules. Int J Quantum Chem 38:645–653. https://doi.org/10.1002/qua.5603

    Article  Google Scholar 

  43. Alsalme A, Pooventhiran T, Al-Zaqri N, Rao DJ, Thomas R (2021) Structural, physic-chemical landscapes, ground state and excited state properties in different solvents atmosphere of avapritinib and its ultrasensitive detection using SERS/GERS on self assembly formation with graphene quantum dots. J Mol Liquid 322:114555. https://doi.org/10.1016/j.molliq.2020.114555

    Article  CAS  Google Scholar 

  44. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity. Can J Chem 68:1440–1443. https://doi.org/10.1139/v90-220

    Article  CAS  Google Scholar 

  45. Politzer P, Abu-Awwad F, Murray JS (1998) Comparison of density functional and Hartree-Fock average local ionization energies on molecular surfaces. Int J Quantum Chem 69:607–613. https://doi.org/10.1002/(SICI)1097-461X(1998)69:4<607::AID-QUA18>3.0.CO:2-W

    Article  CAS  Google Scholar 

  46. Surendar P, Pooventhiran T, Rajam S, Bhattacharyya U, Bakht A, Thomas R (2021) Quasi-liquid Schiff bases from trans-2-hexenal and cytosine and l-leucine with potentialantieczematic and antiarthritic activities: synthesis, structure and quantum mechanical studies. J Mol Liq 334:116448. https://doi.org/10.1016/j.molliq.2021.116448

    Article  CAS  Google Scholar 

  47. Alharthi FA, Al-Zaqri N, Alsalme A, Al-Taleb A, Pooventhiran T, Thomas R, Rao DJ (2021) Excited state electronic properties, structural studies, noncovalent interactions and inhibition of the novel severe acute respiratory syndrome corona virus 2 proteins in ripretinib by first principle simulations. J Mol Liq 324:115134. https://doi.org/10.1016/j.molliq.2021.115134

    Article  CAS  PubMed  Google Scholar 

  48. Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742. https://doi.org/10.1007/s00894-010-0709-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors express their gratitude to Princess Nourah Bint Abdulrahman University Researchers Supporting Project (number PNURSP2023R1), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Jamelah S. Al-Otaibi: software, supervision, manuscript preparation, and data analysis. Y. Sheena Mary: supervision, manuscript preparation, conceiving the problem, and data analysis. Y. Shyma Mary: manuscript preparation, conceiving the problem, and data analysis and correction. Renjith Thomas: manuscript preparation, conceiving the problem, and data analysis and correction.

Corresponding author

Correspondence to Jamelah S. Al-Otaibi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to the changes of year in Funding section.

Supplementary information

ESM 1

(DOCX 173 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Otaibi, J.S., Mary, Y.S., Mary, Y.S. et al. Evidences of noncovalent interactions between indole and dichloromethane under different solvent conditions. J Mol Model 29, 246 (2023). https://doi.org/10.1007/s00894-023-05623-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05623-3

Keywords

Navigation