Skip to main content

Advertisement

Log in

The single-atom catalytic activity of the hydrogen evolution reaction of the experimentally synthesized boridene 2D material: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Previous theoretical studies have suggested that two-dimensional (2D) MBene materials might display adequate monatomic catalytic activity for the hydrogen evolution reaction (HER). Recently, a study reported the experimental synthesis of a 2D MBene (Mo4/3B2), re-defined as boridene, albeit no effort has been devoted to explore the single-atom catalytic activity for HER of this experimentally synthesized 2D material. Therefore, we herein investigate the single-atom HER performance of the boridene. Interestingly, with Mo defects mixed with single Au and Zn atoms shows excellent hydrogen evolution performance, and the change in the Gibbs free energy (\(\Delta {\mathrm{G}}_{H}\)) value is close to 0 eV, which can even match the performance of Pt-based materials. Through analysis of the charge density difference and density of states, the mechanism affecting the HER performance is explained at the electronic level. This work provides a new direction for the use of the Mo4/3B2 monolayer two-dimensional materials in the field of single-atom catalysis for HER.

Methods

This study used the DFT calculations in Vienna ab initio simulation package. The GGA-Perdew-Burke-Ernzerhof functional with DFT-D2 correction is used to describe the exchange–correlation interactions. The projection augmented wave is used with the plane wave cutoff of 500 eV. The convergences of energy and force are 10−5 eV and 0.01 eV/Å, respectively. A vacuum layer with a height of 20 Å is set in the Z direction. For geometry optimization, self-consistent, and DOS calculations, the k-point grids sampled in Brillouin zones are 3 × 3 × 1, 9 × 9 × 1, and 9 × 9 × 1, respectively. The AIMD simulation is performed in the canonical ensemble (NVT), and the temperature was maintained at 300 K by Nosé-Hoover thermostats with a time step of 2.0 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data will be available if required.

Code availability

Not applicable.

References

  1. Chen C, Zhang N, Liu X, He Y, Wan H, Liang B, Ma R, Pan A, Roy VAL (2016) Polypyrrole-modified NH4NiPO4·H2O nanoplate arrays on Ni foam for efficient electrode in electrochemical capacitors. Acs Sustain Chem Eng 4:5578–5584. https://doi.org/10.1021/acssuschemeng.6b01347

    Article  CAS  Google Scholar 

  2. Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energ Environ Sci 5:6012–6021. https://doi.org/10.1039/C2EE03250C

    Article  CAS  Google Scholar 

  3. Xu H, Cheng D, Cao D, Zeng XC (2018) A universal principle for a rational design of single-atom electrocatalysts. Nat Catal 1:339–348. https://doi.org/10.1038/s41929-018-0063-z

    Article  CAS  Google Scholar 

  4. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473. https://doi.org/10.1021/cr1002326

    Article  CAS  PubMed  Google Scholar 

  5. Apak S, Atay E, Tuncer G (2017) Renewable hydrogen energy and energy efficiency in Turkey in the 21st century. Int J Hydrogen Energ 42:2446–2452. https://doi.org/10.1016/j.ijhydene.2016.05.043

    Article  CAS  Google Scholar 

  6. Frolov SM, Medvedev SN, Basevich VY, Frolov FS (2013) Self-ignition of hydrocarbon–hydrogen–air mixtures. Int J Hydrogen Energ 38:4177–4184. https://doi.org/10.1016/j.ijhydene.2013.01.075

    Article  CAS  Google Scholar 

  7. Hu J, Zhang C, Jiang L, Lin H, An Y, Zhou D, Leung MKH, Yang S (2017) Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 1:383–393. https://doi.org/10.1016/j.joule.2017.07.011

    Article  CAS  Google Scholar 

  8. Eftekhari A (2017) Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energ 42:11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125

    Article  CAS  Google Scholar 

  9. Pašti IA, Fako E, Dobrota AS, López N, Skorodumova NV, Mentus SV (2019) Atomically thin metal films on foreign substrates: from lattice mismatch to electrocatalytic activity. Acs Catal 9:3467–3481. https://doi.org/10.1021/acscatal.8b04236

    Article  CAS  Google Scholar 

  10. Skúlason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jónsson H, Nørskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Phys 9:3241–3250. https://doi.org/10.1039/B700099E

    Article  Google Scholar 

  11. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892. https://doi.org/10.1021/jp047349j

    Article  CAS  Google Scholar 

  12. Kan D, Wang D, Zhang X, Lian R, Xu J, Chen G, Wei Y (2020) Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations. J Mater Chem A 8:3097–3108. https://doi.org/10.1039/C9TA12255A

    Article  CAS  Google Scholar 

  13. Fu Z, Ling C, Wang J (2020) A Ti3C2O2 supported single atom, trifunctional catalyst for electrochemical reactions. J Mater Chem A 8:7801–7807. https://doi.org/10.1039/D0TA01047B

    Article  CAS  Google Scholar 

  14. Ghosh S, Basu RN (2018) Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale 10:11241–11280. https://doi.org/10.1039/C8NR01032C

    Article  CAS  PubMed  Google Scholar 

  15. Schweinberger FF, Berr MJ, Döblinger M, Wolff C, Sanwald KE, Crampton AS, Ridge CJ, Jäckel F, Feldmann J, Tschurl M, Heiz U (2013) Cluster size effects in the photocatalytic hydrogen evolution reaction. J Am Chem Soc 135:13262–13265. https://doi.org/10.1021/ja406070q

    Article  CAS  PubMed  Google Scholar 

  16. Peng Q, Zhou J, Chen J, Zhang T, Sun Z (2019) Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell. J Mater Chem A 7:26062–26070. https://doi.org/10.1039/C9TA08297B

    Article  CAS  Google Scholar 

  17. Zhang B, Zhou J, Guo Z, Peng Q, Sun Z (2020) Two-dimensional chromium boride MBenes with high HER catalytic activity. Appl Surf Sci 500:144248. https://doi.org/10.1016/j.apsusc.2019.144248

    Article  CAS  Google Scholar 

  18. Zhang H, Xiang H, Dai F-z, Zhang Z, Zhou Y (2018) First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. J Mater Sci Technol 34:2022–2026. https://doi.org/10.1016/j.jmst.2018.02.024

    Article  CAS  Google Scholar 

  19. Guo Z, Zhou J, Sun Z (2017) New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J Mater Chem A 5:23530–23535. https://doi.org/10.1039/C7TA08665B

    Article  CAS  Google Scholar 

  20. Alameda LT, Moradifar P, Metzger ZP, Alem N, Schaak RE (2018) Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J AM CHEM SOC 140:8833–8840. https://doi.org/10.1021/jacs.8b04705

    Article  CAS  PubMed  Google Scholar 

  21. Alameda LT, Lord RW, Barr JA, Moradifar P, Metzger ZP, Steimle BC, Holder CF, Alem N, Sinnott SB, Schaak RE (2019) Multi-step topochemical pathway to metastable Mo2AlB2 and related two-dimensional nanosheet heterostructures. J Am Chem Soc 141:10852–10861. https://doi.org/10.1021/jacs.9b04726

    Article  CAS  PubMed  Google Scholar 

  22. Zhang T, Zhang B, Peng Q, Zhou J, Sun Z (2021) Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J Mater Chem A 9:433–441. https://doi.org/10.1039/D0TA08630D

    Article  CAS  Google Scholar 

  23. Wang J, Ye T-N, Gong Y, Wu J, Miao N, Tada T, Hosono H (2019) Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat Commun 10:2284. https://doi.org/10.1038/s41467-019-10297-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou J, Palisaitis J, Halim J, Dahlqvist M, Tao Q, Persson I, Hultman L, Persson Per OÅ, Rosen J (2021) Boridene: two-dimensional Mo4/3B2-x with ordered metal vacancies obtained by chemical exfoliation. Science 373:801–805. https://doi.org/10.1126/science.abf6239

    Article  CAS  PubMed  Google Scholar 

  25. Cui Z, Du W, Xiao C, Li Q, Sa R, Sun C, Ma Z (2020) Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Front Phys-Beijing 15:63502. https://doi.org/10.1007/s11467-020-0980-6

    Article  Google Scholar 

  26. Ma Z, Cui Z, Xiao C, Dai W, Lv Y, Li Q, Sa R (2020) Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer. Nanoscale 12:1541–1550. https://doi.org/10.1039/C9NR08969A

    Article  CAS  PubMed  Google Scholar 

  27. Ma Z, Cui Z, Lv Y, Sa R, Wu K, Li Q (2020) Three-in-one: opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S Co-doping. Int J Hydrogen Energ 45:4534–4544. https://doi.org/10.1016/j.ijhydene.2019.12.074

    Article  CAS  Google Scholar 

  28. Zhou Y, Gao G, Kang J, Chu W, Wang L-W (2019) Transition metal-embedded two-dimensional C3N as a highly active electrocatalyst for oxygen evolution and reduction reactions. J Mater Chem A 7:12050–12059. https://doi.org/10.1039/C9TA01389J

    Article  CAS  Google Scholar 

  29. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y (2020) Chemical synthesis of single atomic site catalysts. Chem Rev 120:11900–11955. https://doi.org/10.1021/acs.chemrev.9b00818

    Article  CAS  PubMed  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  31. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  33. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  34. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  35. Su C, Jiang H, Feng J (2013) Two-dimensional carbon allotrope with strong electronic anisotropy. Phys Rev B 87:075453. https://doi.org/10.1103/PhysRevB.87.075453

    Article  CAS  Google Scholar 

  36. Mananghaya MR, Santos GN, Yu D (2017) Nitrogen substitution and vacancy mediated scandium metal adsorption on carbon nanotubes. Adsorption 23:789–797. https://doi.org/10.1007/s10450-017-9901-6

    Article  CAS  Google Scholar 

  37. Gao G, O’Mullane AP, Du A (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. Acs Catal 7:494–500. https://doi.org/10.1021/acscatal.6b02754

    Article  CAS  Google Scholar 

  38. Conway BE, Tilak BV (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 47:3571–3594. https://doi.org/10.1016/S0013-4686(02)00329-8

    Article  CAS  Google Scholar 

  39. Lv X, Wei W, Wang H, Huang B, Dai Y (2019) Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen and oxygen electrode reactions: a computational study. Appl Catal B-Environ 255:117743. https://doi.org/10.1016/j.apcatb.2019.05.045

    Article  CAS  Google Scholar 

  40. Cheng Y-W, Dai J-H, Zhang Y-M, Song Y (2018) Two-dimensional, ordered, double transition metal carbides (MXenes): a new family of promising catalysts for the hydrogen evolution reaction. J Phys Chem C 122:28113–28122. https://doi.org/10.1021/acs.jpcc.8b08914

    Article  CAS  Google Scholar 

  41. Yang TT, Patil RB, McKone JR, Saidi WA (2021) Revisiting trends in the exchange current for hydrogen evolution. Catal Sci Technol 11:6832–6838. https://doi.org/10.1039/D1CY01170G

    Article  CAS  Google Scholar 

  42. Xiao C, Sa R, Cui Z, Gao S, Du W, Sun X, Zhang X, Li Q, Ma Z (2021) Enhancing the hydrogen evolution reaction by non-precious transition metal (Non-metal) atom doping in defective MoSi2N4 monolayer. Appl Surf Sci 563:150388. https://doi.org/10.1016/j.apsusc.2021.150388

    Article  CAS  Google Scholar 

  43. Chen B, Liu H, Bai T, Song Z, Xie J, Wu K, Cheng Y, Xiao B (2022) Prediction of boridenes as high-performance anodes for alkaline metal and alkaline Earth metal ion batteries. Nanoscale 14:17955–17975. https://doi.org/10.1039/D2NR05129J

    Article  CAS  PubMed  Google Scholar 

  44. El-Barbary AA, Telling RH, Ewels CP, Heggie MI, Briddon PR (2003) Structure and energetics of the vacancy in graphite. Phys Rev B 68:144107. https://doi.org/10.1103/PhysRevB.68.144107

    Article  CAS  Google Scholar 

  45. Le D, Rawal TB, Rahman TS (2014) Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J Phys Chem C 118:5346–5351. https://doi.org/10.1021/jp411256g

    Article  CAS  Google Scholar 

  46. Jiang Z, Wang P, Jiang X, Zhao J (2018) MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horiz 3:335–341. https://doi.org/10.1039/C7NH00197E

    Article  CAS  PubMed  Google Scholar 

  47. Ling C, Shi L, Ouyang Y, Wang J (2016) Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem Matter 28:9026–9032. https://doi.org/10.1021/acs.chemmater.6b03972

    Article  CAS  Google Scholar 

  48. Li P, Zhu J, Handoko AD, Zhang R, Wang H, Legut D, Wen X, Fu Z, Seh ZW, Zhang Q (2018) High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. J Mater Chem A 6:4271–4278. https://doi.org/10.1039/C8TA00173A

    Article  CAS  Google Scholar 

  49. Er D, Ye H, Frey NC, Kumar H, Lou J, Shenoy VB (2018) Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Lett 18:3943–3949. https://doi.org/10.1021/acs.nanolett.8b01335

    Article  CAS  PubMed  Google Scholar 

  50. Calle-Vallejo F, Koper MTM, Bandarenka AS (2013) Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chem Soc Rev 42:5210–5230. https://doi.org/10.1039/C3CS60026B

    Article  CAS  PubMed  Google Scholar 

  51. Tan X, Qi S, Hua R, Yi C, Yang B (2021) The correlation of NO chemisorption adsorption with its directly catalytic dissociation pathway on β-MnO2(110) and (101) surfaces. Appl Surf Sci 562:150032. https://doi.org/10.1016/j.apsusc.2021.150032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. M. P.-A. thanks the Laboratorio Nacional de Supercómputo del Sureste de México (LNS-BUAP) of the CONACyT network of national laboratories for the computer resources and support provided and the computing time granted by LANCAD and CONACYT on the supercomputer at CGSTIC CINVESTAV.

Funding

Z. G. acknowledges the support of the Youth Hundred Talents Program of Yangzhou University, National Natural Science Foundation of China (no. 12104394), and Natural Science Research of Jiangsu Higher Education Institutions of China (no. 21KJB140024). Y. T. acknowledges the support of the National Natural Science Foundation of China (no. 12075201) and Science and Technology Planning Project of Jiangsu Province (BK20201428).

Author information

Authors and Affiliations

Authors

Contributions

Zonglin Gu and Yusong Tu conceived the concept and designed the study. Zhaoju Gao, Zhijing Huang, and Wenya Zhang carried out the theoretical calculations and analysis. Zonglin Gu, Jose Manuel Perez-Aguilar, and Zhaoju Gao co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jose Manuel Perez-Aguilar, Zonglin Gu or Yusong Tu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4486 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Huang, Z., Zhang, W. et al. The single-atom catalytic activity of the hydrogen evolution reaction of the experimentally synthesized boridene 2D material: a density functional theory study. J Mol Model 29, 80 (2023). https://doi.org/10.1007/s00894-023-05486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05486-8

Keywords

Navigation