Skip to main content
Log in

Theoretically unveiling the effect of solvent polarities on ESDPT mechanisms and photophysical properties of hydroxyanthraquinones

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we were devoted to explore the effect of solvent polarities on the excited-state intramolecular proton transfer (ESIPT) process of 1-acetamido-4-hydroxyanthraquinone (AcHAQ) in three different polarity solvents (acetonitrile, chloroform, and cyclohexane) based on the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, and thereby regulating the distribution ratio between the dual excited-state isomers (enol and keto). The calculated geometrical parameters and infrared (IR) vibrational spectra have confirmed the excited-state intramolecular hydrogen bond (IHB) strengthening mechanism. Natural bond orbital (NBO) population analysis indicates that the intramolecular charge transfer (ICT) around IHBs has enhanced IHB, thereby triggering the ESIPT reaction. In addition, results obtained from the scanned potential energy curve (PEC) manifest that ESIPT process prefers to occur along the O3-H2O1 IHB and energy barriers corresponding to the proton transfer in ACN are the lowest among all the studied solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Tang KC, Chang MJ, Lin TY et al (2011) J Am Chem Soc 133:17738

    Article  CAS  Google Scholar 

  2. Chen L, Ye JW, Wang HP et al (2017) Nat Commun 8:15985

    Article  CAS  Google Scholar 

  3. Yang XF, Huang Q, Zhong YG et al (2014) Chem Sci 5:2177

    Article  CAS  Google Scholar 

  4. Wu LL, Sedgwick AC, Sun XL, Bull SD, He XP, James TD (2019) Acc Chem Res 52:2582

    Article  CAS  Google Scholar 

  5. Padalkar VS, Seki S (2016) Chem Soc Rev 45:169

    Article  CAS  Google Scholar 

  6. Zhang W, Yan YL, Gu JM, Yao JN, Zhao YS (2015) Angew Chem Int Ed 54:7125

    Article  CAS  Google Scholar 

  7. Kim D, Jeong K, Kwon JE et al (2019) Nat Commun 10:3089

    Article  Google Scholar 

  8. Wei GQ, Yu Y, Zhuo MP, Wang XD, Liao LS (2020) J Mater Chem C 8:11916

    Article  CAS  Google Scholar 

  9. Qian HL, Dai C, Yang CX, Yan XP (2017) ACS Appl Mater Interfaces 9:24999

    Article  CAS  Google Scholar 

  10. Boonkitpatarakul K, Wang JF, Niamnont N et al (2016) ACS Sens 1:144

    Article  CAS  Google Scholar 

  11. Azarias C, Budzak S, Laurent AD, Ulrich G, Jacquemin D (2016) Chem Sci 7:3763

    Article  CAS  Google Scholar 

  12. Tian MG, Ma YY, Lin WY (2019) Acc Chem Res 52:2147

    Article  CAS  Google Scholar 

  13. Shang CJ, Cao YJ, Sun CF, Zhao HF (2022) Phys Chem Chem Phys 24:8453

    Article  CAS  Google Scholar 

  14. Dutta S, Mandal D (2022) J Mol Liq 361:119651

    Article  CAS  Google Scholar 

  15. Han JH, Cao BF, Li Y et al (2020) Spectrochim Acta, Part A 231:118086

    Article  Google Scholar 

  16. Cao YJ, Yu XR, Sun CF, Cui JA (2022) Int J Mol Sci 23:2132

    Article  CAS  Google Scholar 

  17. Niu YH, Wang R, Shao PL, Wang YX, Zhang YR (2018) Chem - Eur J 24:16670

    Article  CAS  Google Scholar 

  18. Yang YF, Luo X, Ma FC, Li YQ (2021) Spectrochim Acta, Part A 250:119375

    Article  CAS  Google Scholar 

  19. Sun CF, Li Y, Li B et al (2020) J Mol Liq 297:111937

    Article  CAS  Google Scholar 

  20. Sun CF, Zhao HF, Liu XC, Yin H, Shi Y (2018) Org Chem Front 5:3435

    Article  CAS  Google Scholar 

  21. Yang WY, Lai RC, Wu JJ et al (2022) Adv Funct Mater 32:2204129

  22. Zhang YJ, Shang CJ, Cao YJ, Ma M, Sun CF (2022) Spectrochim Acta, Part A 280:121559

    Article  CAS  Google Scholar 

  23. Li Q, Wan Y, Zhou Q et al (2022) Spectrochim Acta, Part A 272:120953

    Article  CAS  Google Scholar 

  24. Yu XR, Cao YN, Li YZ, Cui JA, Sun CF (2022) J Mol Struct 1250:131923

    Article  CAS  Google Scholar 

  25. Tirado-Rives J, Jorgensen WL (2008) J Chem Theory Comput 4:297

    Article  CAS  Google Scholar 

  26. Cossi M, Barone V (2001) J Chem Phys 115:4708

    Article  CAS  Google Scholar 

  27. Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845

    Article  CAS  Google Scholar 

  28. Zhang J, Lalevee J, Hill NS et al (2018) Macromolecules 51:8165

    Article  CAS  Google Scholar 

  29. Durant JL (1996) Chem Phys Lett 256:595

    Article  CAS  Google Scholar 

  30. Jacquemin D, Wathelet V, Perpete EA, Adamo C (2009) J Chem Theory Comput 5:2420

    Article  CAS  Google Scholar 

  31. Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theory Comput 4:123

    Article  CAS  Google Scholar 

  32. Valdes H, Pluhackova K, Pitonak M, Rezac J, Hobza P (2008) Phys Chem Chem Phys 10:2747

    Article  CAS  Google Scholar 

  33. Zhao JF, Chen JS, Liu JY, Hoffmann MR (2015) Phys Chem Chem Phys 17:11990

    Article  CAS  Google Scholar 

  34. Zhou PW, Han K (2018) Acc Chem Res 51:1681

    Article  CAS  Google Scholar 

  35. Yin H, Li H, Xia GM et al (2016) Sci Rep 6:19774

    Article  CAS  Google Scholar 

  36. Li CZ, Ma C, Li DL, Liu YF (2016) J Lumin 172:29

    Article  CAS  Google Scholar 

  37. Li YQ, Ma YZ, Yang YF, Shi W, Lan RF, Guo Q (2018) Phys Chem Chem Phys 20:4208

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams DF, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16. Gaussian Inc, Wallingford, CT, USA

    Google Scholar 

  39. Liang NQ, Kuwata S, Ishige R, Ando S (2021) Mater Chem Front 6:24

    Article  Google Scholar 

  40. Li Y, Sun CF, Han JH et al (2020) J Lumin 221:117110

    Article  CAS  Google Scholar 

  41. Inamdar SR, Mannekutla JR, Sannaikar MS, Wari MN, Mulimani BG, Savadatti MI (2018) J Mol Liq 268:66

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Innovation Training Project Program of Heilongjiang Province (No. S202210225053) and the Fundamental Research Funds for the Central Universities (No. 2572020BC03).

Author information

Authors and Affiliations

Authors

Contributions

Xin Xu: conceptualization, data curation, writing—original draft. Zeran Zhang: investigation, writing—review and editing. Yajie Zhang, Linyue Jin, and Qian Cheng: writing—review and editing. Fang Liu: conceptualization, methodology, writing—review and editing, resources. Chaofan Sun: conceptualization, methodology, investigation, software, writing—review and editing, resources.

Corresponding authors

Correspondence to Fang Liu or Chaofan Sun.

Ethics declarations

Consent for publication

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rights holder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhang, Z., Zhang, Y. et al. Theoretically unveiling the effect of solvent polarities on ESDPT mechanisms and photophysical properties of hydroxyanthraquinones. J Mol Model 28, 389 (2022). https://doi.org/10.1007/s00894-022-05383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05383-6

Keywords

Navigation