Skip to main content
Log in

An investigation into the structural, electronic, and non-linear optical properties in CN (N = 20, 24, 26, 28, 30, 32, 34, 36, and 38) fullerene cages

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present study attempts to investigate the structural, electronic, and non-linear optical properties of CN (N = 20, 24, 26, 28, 30, 32, 34, 36, and 38) fullerene cages based on Density Functional Theory (DFT). In the DFT calculations, the B3LYP/6-311G(d,p) and CAM-B3LYP/6–311 +  + G(d,p) level of theories were used. The isomers of each fullerene have been received from the Fullerene Structure Library. These isomers have optimized using the B3LYP/6-311G(d,p). The results included optimization of the neutral and ionic state structures according to their multiplicity. Geometries, optimization energies, relative energies, frequencies, HOMO, LUMO, and HOMO–LUMO gap of these stable fullerene cages have been predicted by B3LYP/6-311G(d,p). Afterwards, the most stable structures have been re-optimized using the CAM-B3LYP /6–311 +  + G(d,p). Finally, non-linear optical properties, Fukui functions, density of state, electron affinity, and ionization potential values of the most stable fullerene cages have been found out by the DFT/ CAM-B3LYP /6–311 +  + G(d,p) level of theory. All calculation results have been compared with both C60 fullerene and the relevant literature on corresponding fullerenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kroto H (1997) Rev Mod Phys 69:703–722. https://doi.org/10.1103/RevModPhys.69.703

    Article  CAS  Google Scholar 

  2. Dunk PW, Kaiser NK, Mulet-Gas M, Rodríguez-Fortea A, Poblet JM, Shinohara H, Hendrickson CL, Marshall AG, Kroto HW (2012) J Am Chem Soc 134:9380–9389. https://doi.org/10.1021/ja302398h

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y-M, Shi J, Rui L, Guo Q-X (2009) J Mol Struct (Thoechem) 907:104–108. https://doi.org/10.1016/j.theochem.2009.04.038

    Article  CAS  Google Scholar 

  4. Sun Q, Wang Q, Yu JZ, Ohno K, Kawazoe Y (2001) J Phys: Condens Matter 13:1931–1938. https://doi.org/10.1088/0953-8984/13/9/315

    Article  CAS  Google Scholar 

  5. Paul D, Deb J, Sarkar U (2020) ChemistrySelect 5:6987–6999. https://doi.org/10.1002/slct.202001988

    Article  CAS  Google Scholar 

  6. Alonso AM, Guldi DM, Paolucci F, Prato M (2007) Fullerenes: Multitask Components in Molecular Machinery Angew. Chem Int Ed 46:8120–8126. https://doi.org/10.1002/anie.200702725

    Article  CAS  Google Scholar 

  7. Nierengarten JF et al (2000) Synthesis and electronic properties of donor-linked fullerenes towards photochemical molecular devices. Carbon 38:1587–1598. https://doi.org/10.1016/S0008-6223(99)00290-0

    Article  CAS  Google Scholar 

  8. Kennedy RD, Ayzner AL, Wanger DD, Day CT, Halim M, Khan SI, Tolbert SH, Schwartz BJ, Rubin Y (2008) Self-assembling fullerenes for improved bulk-heterojunction photovoltaic devices. J Am Chem Soc 130:17290–17292. https://doi.org/10.1021/ja807627u

    Article  CAS  PubMed  Google Scholar 

  9. Golberg D, Bando Y, Stephan O, Kurashima K (1998) Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl Phys Lett 73:2441. https://doi.org/10.1063/1.122475

    Article  CAS  Google Scholar 

  10. Ying D, Yang Y, Yang Y, Fang H (2016) A novel fullerene-like B30N30 structure: Stability and electronic property. Carbon 102:273–278. https://doi.org/10.1016/j.carbon.2016.02.063

    Article  CAS  Google Scholar 

  11. Alexandre SS, Mazzoni MSC, Chacham H (1999) Stability, geometry, and electronic structure of the boron nitride B36N36 fullerene. Appl Phys Lett 75:61. https://doi.org/10.1063/1.124277

    Article  CAS  Google Scholar 

  12. Mocci P, Cardia R, Cappellini G (2019) A computational study on the electronic and optical properties of boron-nitride circumacenes. Phys Chem Chem Phys 21:16302–16309. https://doi.org/10.1039/C9CP01038F

    Article  CAS  PubMed  Google Scholar 

  13. Mocci P, Cardia R, Bosin A, Cappellini G (2020) Opto-electronic properties of BN-ring insertions in Circumacenes: the case of coronene and ovalene. J Phys Conf Ser. 1548:012028

    Article  CAS  Google Scholar 

  14. Mocci P, Cardia R, Cappellini G (2019) A computational investigation on the electronic and optical properties of coronene and its boron-nitride and perfluorinated counterparts. J Phys Conf Ser 1226:012016

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  16. Becke AD (1993) J Chem Phys 98:5648–5653

    Article  CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  18. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  19. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  20. Mitsuho Yoshida, Fullerene Structure Library (n.d.) https://nanotube.msu.edu/fullerene/fullerene-isomers.html. Accessed 15 Sept 2021

  21. Alparone A (2013) Response electric properties of α-helix polyglycines: a CAM-B3LYP DFT investigation Chem. Phys Lett 536:88–92. https://doi.org/10.1016/j.cplett.2013.01.062

    Article  CAS  Google Scholar 

  22. Peach MJG, Helgaker T, Sałek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC (2006) Assessment of a Coulomb-attenuated exchange–correlation energy functional. Phys. Chem. Chem Phys 8:558–562. https://doi.org/10.1039/B511865D

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi R, Amos RD (2006) The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin–bacteriochlorin complex. Chem Phys Lett 420:106–109. https://doi.org/10.1016/j.cplett.2005.12.040

    Article  CAS  Google Scholar 

  24. Jacquemin D, Perpète EA, Medved M, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) First hyperpolarizability of polymethineimine with long-range corrected functional. J Chem Phys 126:191108. https://doi.org/10.1063/1.2741246

    Article  CAS  PubMed  Google Scholar 

  25. Limacher A, Mikkelsen KV, Lüthi HP (2009) On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. J Chem Phys 130:194114. https://doi.org/10.1063/1.3139023

    Article  CAS  PubMed  Google Scholar 

  26. Shakerzadeh E, Tahmasebi E, Biglari Z (2016) A quantum chemical study on the remarkable nonlinear optical and electronic characteristics of boron nitride nanoclusters by complexation via lithium atom. J Mol Liq 221:443–451. https://doi.org/10.1016/j.molliq.2016.05.090

    Article  CAS  Google Scholar 

  27. Erdogdu Y, Erkoc S (2012) Jnl of Comp & Theo. NANO 9:837–850. https://doi.org/10.1166/jctn.2012.2105

    Article  CAS  Google Scholar 

  28. Subashchandrabose S, Saleem H, Erdogdu Y, Dereli Ö, Thanikachalam V, Jayabharathi J (2012) Spectrochim Acta Part A Mol Biomol Spectrosc 86:231–241. https://doi.org/10.1016/j.saa.2011.10.029

    Article  CAS  Google Scholar 

  29. Atilgan A, Yurdakul Ş, Erdogdu Y, Güllüoğlu MT (2018) J Mol Struct 1161:55–65. https://doi.org/10.1016/j.molstruc.2018.01.080

    Article  CAS  Google Scholar 

  30. Rad AS, Ayub K (2018) Mater Res Bull 97:399–404. https://doi.org/10.1016/j.materresbull.2017.09.036

    Article  CAS  Google Scholar 

  31. Wang Z, Lian K, Pan S, Fan X (2005) J Comput Chem 26:1279–1283. https://doi.org/10.1002/jcc.20268

    Article  CAS  PubMed  Google Scholar 

  32. Prinzbach H, Weiler A, Landenberger P, Wahl F, Wörth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000) Nature 407:60–63. https://doi.org/10.1038/35024037

    Article  CAS  PubMed  Google Scholar 

  33. Rad AS, Ayub K (2019) Appl Phys A 125:430. https://doi.org/10.1007/s00339-019-2721-7

    Article  CAS  Google Scholar 

  34. Yang S, Pettiette CL, Conceicao J, Cheshnovsky O, R E Smalley (1987) 139:233–238. https://doi.org/10.1016/0009-2614(87)80548-1

  35. Wang LS, Conceicao J, Jin CM, Smalley RE (1991) Chem Phys Lett 182:5. https://doi.org/10.1016/0009-2614(91)80094-E

    Article  CAS  Google Scholar 

  36. Wang X-B, Ding C-F, Wang L-S (1999) J Chem Phys 110:8217–8220. https://doi.org/10.1063/1.478732

    Article  CAS  Google Scholar 

  37. Jensen F, Koch H (1998) J Chem Phys 108:3213–3217. https://doi.org/10.1063/1.475716

    Article  CAS  Google Scholar 

  38. Heidari Nezhad Janjanpour M, Vakili M, Daneshmehr S, Jalalierad K, Alipour F (2018) Chem Rev Lett 1. https://doi.org/10.22034/crl.2018.85215.

  39. Kosar N, Tahir H, Ayub K, Mahmood T (2021) J Mol Graph Model 105:107867. https://doi.org/10.1016/j.jmgm.2021.107867

    Article  CAS  PubMed  Google Scholar 

  40. Balevišius LM, Stumbrys E, Tamulis A (1997) Fullerene Sci Technol 5:85–96. https://doi.org/10.1080/15363839708011974

    Article  Google Scholar 

  41. An J, Gan LH, Zhao JQ, Li R (2010) The Journal of Chemical Physics 132:154304

  42. Adjizian J-J, Vlandas A, Rio J, Charlier J-C, Ewels CP (2016) Phil Trans R Soc A 374:20150323. https://doi.org/10.1098/rsta.2015.0323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muñoz-Castro A, Bruce King R (2017) J Comput Chem 38:44–50. https://doi.org/10.1002/jcc.24518

    Article  CAS  PubMed  Google Scholar 

  44. Sabirov DSh, Bulgakov RG (2010) Jetp Lett 92:662–665. https://doi.org/10.1134/S0021364010220054

    Article  CAS  Google Scholar 

  45. Lin J, Hu J, Zhang J-R, Wang S-Y, Ma Y, Song X-N (2019) Spectrochim Acta Part A Mol Biomol Spectrosc 212:180–187. https://doi.org/10.1016/j.saa.2018.12.043

    Article  CAS  Google Scholar 

  46. Lu X, Chen Z (2005) Chem Rev 105:3643–3696. https://doi.org/10.1021/cr030093d

    Article  CAS  PubMed  Google Scholar 

  47. Halim SA (2018) Int J Nano Dimens 9(4):421–434

    Google Scholar 

  48. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, He Y, Li Y, Su H (2012) J Phys Chem A 116:255–262. https://doi.org/10.1021/jp208520v

    Article  CAS  PubMed  Google Scholar 

  50. de Vries J, Steger H, Kamke B, Menzel C, Weisser B, Kamke W, Hertel IV (n.d.) Chem Phys Lett. 188 4

  51. Huang D-L, Dau PD, Liu H-T, Wang L-S (2014) J Chem Phys 140:224315. https://doi.org/10.1063/1.4881421

    Article  CAS  PubMed  Google Scholar 

  52. Omri N, Bu Y (2021) J Phys Chem A 125:106–114. https://doi.org/10.1021/acs.jpca.0c08533

    Article  CAS  PubMed  Google Scholar 

  53. Oboyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845. https://doi.org/10.1002/jcc.20823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Quantum Chemical calculations reported in this paper were fully performed at Harran University High Performance Computing Center (Harran HPC resources).

Author information

Authors and Affiliations

Authors

Contributions

K. Soyarslan: investigation, writing – review & editing.

B. Ortatepe: resources writing – review & editing.

B. Yurduguzel: resources writing – review & editing.

M. T. Güllüoğlu: resources writing – review & editing.

Y. Erdogdu: investigation, writing – original draft, review & editing, supervision.

Corresponding author

Correspondence to Y. Erdogdu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1890 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soyarslan, K., Ortatepe, B., Yurduguzel, B. et al. An investigation into the structural, electronic, and non-linear optical properties in CN (N = 20, 24, 26, 28, 30, 32, 34, 36, and 38) fullerene cages. J Mol Model 28, 352 (2022). https://doi.org/10.1007/s00894-022-05348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05348-9

Keywords

Navigation