Skip to main content

Advertisement

Log in

The stability, structural, electronic, and optical properties of hydrogenated silicene under hydrostatic pressures: a first-principle study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural, electronic, and optical properties of hydrogenated silicene have been studied under different hydrostatic pressures using first-principle calculations. The binding energy and band structure have been calculated for chair (C-) and boat (B-) structures, which are having good stability at 0 GPa, 3 GPa, 6 GPa, 9 GPa, 12 GPa, 15 GPa, and 18 GPa hydrostatic pressures. Stability has been verified using binding energy and phonon calculations. The C- and B-structures have become metallic and unstable at 21 GPa. The optical properties of B-configuration have been studied in the energy range of 0–20 eV. Five optical parameters such as conductivity threshold (σth), dielectric constant ε(0), refractive index n(0), birefringence Δn(0), and plasmon energy (ħωp) have been calculated for the first time under different hydrostatic pressures. The calculated values are in good agreement with the reported values at 0 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Authors can provide data whenever it is required.

Code availability

Software application.

References

  1. Novosolov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Yu J, Liu G, Sumant AV, Goyal V, Balandin AA (2012) Graphene-on-diamond devices with increased current-carrying capacity: carbon sp2-on-sp3 technology. Nano Lett 12:1603–1608

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Tan Y, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  CAS  PubMed  Google Scholar 

  4. Cahangirov S, Topsakal M, Akturk E, Şahin H, Ciraci S, (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804(1–4).

  5. Zhuo Z, Wu X, Yang J (2018) Two-dimensional silicon crystals with sizable band gaps and ultrahigh carrier mobility. Nanoscale 10:1265–1271

    Article  CAS  PubMed  Google Scholar 

  6. Liu CC, Feng W, Yao Y, (2011) Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107: 076802.

  7. Wang XQ, Li HD, Wang JT (2012) Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys Chem Chem Phys 14:3031–3036

    Article  CAS  PubMed  Google Scholar 

  8. Zheng FB, Zhang CW (2012) The electronic and magnetic properties of functionalized silicene: a first-principles study. Nanoscale Res Lett 7:422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Liu CC, Feng W, Yao Y, (2011) Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107: 076802

  10. Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z, Lu J (2012) Giant magnetoresistance in silicene nanoribbons. Nanoscale 4:3111–3117

    Article  CAS  PubMed  Google Scholar 

  11. Chen L, Feng B, Wu K, (2013) Observation of a possible superconducting gap in silicene on Ag (111) surface. Appl Phys Lett 102 : 081602

  12. Liu CC, Jiang H, Yao Y, (2011) Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B 84:195430.

  13. Ezawa M, (2012) Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys Rev Lett 109:055502.

  14. Wang Y, Zheng J, Ni Z, Fei R, Liu Q, Quhe R, Chengyong X, Zhou J, Zhengxiang G, Lu J (2012) Half-metallic silicene and germanene nanoribbons: towards high-performance spintronics device. NANO 7:1250037

    Article  CAS  Google Scholar 

  15. Jose D, Datta A (2013) Structures and chemical properties of silicene: unlike graphene. Acc Chem Res 47:593

    Article  PubMed  CAS  Google Scholar 

  16. Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11:640

    Article  CAS  PubMed  Google Scholar 

  17. Gao N, Zheng WT, Jiang Q (2012) Density functional theory calculations for two-dimensional silicene with halogen functionalization. Phys Chem Chem Phys 14:257–261

    Article  CAS  PubMed  Google Scholar 

  18. Aghaei SM, Monshi MM, Torres I, Calizo I (2016) Edge functionalization and doping effects on the stability, electronic and magnetic properties of silicene nanoribbons. RSC Adv 6:17046–17058

    Article  CAS  Google Scholar 

  19. Tsai WF, Huang CY, Chang TR, Lin H, Jeng HT, Bansil A (2013) Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat Comm 4:1500

    Article  CAS  Google Scholar 

  20. Lopez-Bezanilla A (2014) Substitutional doping widens silicene gap. J Phys Chem C 118:18788–18792

    Article  CAS  Google Scholar 

  21. Gao N, Li J, Jiang Q (2014) Bandgap opening in silicene: effect of substrates. Chem Phys Lett 592:222–226

    Article  CAS  Google Scholar 

  22. Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2011) Tunable bandgap in silicene and germanene. Nano Lett 12:113–118

    Article  PubMed  CAS  Google Scholar 

  23. Ding Y, Ni J, (2009) Electronic structures of silicon nanoribbons. Appl Phys Lett 95:083115

  24. Pan F, Wang Y, Jiang K, Ni Z, Ma J, Zheng J, Quhe R, Shi J, Yang J, Chen C (2015) Silicene nanomesh Sci Rep 5:9075

    Article  CAS  PubMed  Google Scholar 

  25. Aghaei SM, Calizo I, (2015) Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes. J Appl Phys 118:104304.

  26. Houssa M, Pourtois G, Heyns MM, Afanas’ev VV, Stesmans A (2011) Electronic properties of silicene: insights from first-principles modeling. J Elect Soc 158:H107–H110

    Article  CAS  Google Scholar 

  27. Fang DQ, Zhang SL, Xu H (2013) Tuning the electronic and magnetic properties of zigzag silicene nanoribbons by edge hydrogenation and doping. RSC Adv 3:24075

    Article  CAS  Google Scholar 

  28. Qiu J, Fu H, Xu Y, Zhou Q, Meng S, Li H, Chen L, Wu K (2015) From silicene to half-silicane by hydrogenation. ACS Nano 9:11192

    Article  CAS  PubMed  Google Scholar 

  29. Wang W, Olovsson W, Uhrberg RIG (2016) Band structure of hydrogenated silicene on Ag(111): Evidence for half-silicane. Phys Rev B 93:081406

    Article  CAS  Google Scholar 

  30. Qiu J, Fu H, Xu Y, Oreshkin AI, Shao T, Li H, Meng S, Chen L, Wu K (2015) Ordered and reversible hydrogenation of silicene. Phys Rev Lett 114:126101

    Article  PubMed  CAS  Google Scholar 

  31. Osborn TH, Farajian AA, Pupysheva OV, Aga RS, Voon LCLY (2011) Ab initio simulations of silicene hydrogenation. Chem Phys Lett 511:101–105

    Article  CAS  Google Scholar 

  32. Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas’ev VV, Stesmans A, (2011) Electronic properties of hydrogenated silicene and germanene. App Phy lett 98:223107

    Article  CAS  Google Scholar 

  33. Zhang P, Li XD, Hu CH, Wu SQ, Zhu ZZ (2012) First-principles studies of the hydrogenation efects in silicene sheets. Phys Lett A 376:1230–1233

    Article  CAS  Google Scholar 

  34. Ju W, Li T, Su X, Cui H, Li H (2016) Engineering magnetism and electronic properties of silicene by changing adsorption coverage. Appl Surf Sci 384:65–72

    Article  CAS  Google Scholar 

  35. Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R (2013) Enhancement of energy storage capacity of Mg functionalized silicene and silicane under external strain. Phys Chem Chem Phys 15:18900

    Article  CAS  PubMed  Google Scholar 

  36. Liu Z, Wu X, Luo T (2017) The impact of hydrogenation on the thermal transport of silicene. 2D Mater 4(2):025002

    Article  CAS  Google Scholar 

  37. Zhang P, Li XD, Hu CH, Wu SQ, Zhu ZZ (2012) First-principles studies of the hydrogenation effects in silicene sheets. Phys Lett A 376:1230–1233

    Article  CAS  Google Scholar 

  38. Nguyen MT, Phong PN, Tuyen ND (2015) Hydrogenated graphene and hydrogenated silicene: computational insights. Chem Phys Chem 16(8):1733–1738

    Article  CAS  PubMed  Google Scholar 

  39. Fischetti MV, Vandenberghe WG (2016) Mermin-Wagner theorem, flexural modes, and degraded carrier mobility in two-dimensional crystals with broken horizontal mirror symmetry. Phys Rev B 93:155413

    Article  CAS  Google Scholar 

  40. Gaddemane G, Vandenberghe WG, Van De Put ML, Chen E, Fischetti MV (2018) Monte-Carlo study of electronic transport in non-σh-symmetric two-dimensional materials: Silicene and germanene. J Appl Phys 124:044306

    Article  CAS  Google Scholar 

  41. Khatami MM, Gaddemane G, Van De Put ML, Fischetti MV, Moravvej-Farshi MK, Pourfath M, Vandenberghe WG (2019) Electronic transport properties of silicane determined from first principles. Materials 12:2935

    Article  CAS  PubMed Central  Google Scholar 

  42. Restrepo OD, Mishra R, Goldberger JE, Windl W (2014) Tunable gaps and enhanced mobilities in strain-engineered silicane. J App Phys 115:033711

    Article  CAS  Google Scholar 

  43. Kumar V, Santosh R, Chandra S (2017) First-principle calculations of structural, electronic, optical and thermal properties of hydrogenated graphene. Mat Sci & Engg B 226:64–71

    Article  CAS  Google Scholar 

  44. Santosh R, Kumar V (2020) A first-principles study of the stability and structural, optical, and thermodynamic properties of hydrogenated silicene. J Comp Elect 19:516–528

    Article  CAS  Google Scholar 

  45. Santosh R, Anita S, Kumar V (2020) Structural, stability, electronic, optical and thermodynamic properties of hydrogenated germanene using first-principle calculations. Mater Sci Engg B 259:114584

    Article  CAS  Google Scholar 

  46. Santosh R, Kumar V (2019) The structural, electronic, optical and thermodynamical properties of hydrofluorinated graphene: first-principle calculations. Sol Stat Sci 94:70–76

    Article  CAS  Google Scholar 

  47. Santosh R, Kumar V (2019) The effect of pressure on structural, electronic and optical properties of hydrogenated graphene. J Comp Elect 18(3):770–778

    Article  CAS  Google Scholar 

  48. Kumar V, Santosh R (2019) First-principle calculations of structural, electronic, optical, and thermodynamic properties of fluorographene. Mat Sci Engg B 246:127–135

    Article  CAS  Google Scholar 

  49. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clarck SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys: Cond Mat 14:2717

    CAS  Google Scholar 

  50. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  51. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  CAS  Google Scholar 

  52. Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  53. Kumar V, Chandra S, Santosh R (2018) First-principles calculations of the structural, electronic, elastic and optical properties of LiGaS2 and LiGaSe2 semiconductors under different pressures. 47:1223–1231

  54. Huang LF, Zeng Z, (2013) Lattice dynamics and disorder-induced contraction in functionalized graphene. J. Appl. Phys. 113:083524

  55. Nair RR, Ren WC, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI, Cheng HM, Strupinski W, Bulusheva LG, Okotrub AV, Grigorieva IV, Grigorenko AN, Novoselov KS, Geim AK (2010) Fluorographene: a two-dimensional counterpart of Teflon. Small 6:2877–2884

    Article  CAS  PubMed  Google Scholar 

  56. Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two dimensional hydrocarbon. Phys Rev B 75:153401

    Article  CAS  Google Scholar 

  57. Sahin H, Topsakal M, Ciraci S (2011) Structures of fluorinated graphene and their signatures. Phys Rev B 83:115432

    Article  CAS  Google Scholar 

  58. Sahin H, Ataca C, Ciraci S (2010) Electronic and magnetic properties of graphane nanoribbons. Phys Rev B 81:205417

    Article  CAS  Google Scholar 

  59. Segall MD, Shah R, Pickard CJ, Payne MC (1996) Population analysis of plane-wave electronic structure calculations of bulk materials. Phys Rev B 54:16317–16320

    Article  CAS  Google Scholar 

  60. Nelson J (2003) The Physics of solar cells. Imperial College Press London. ISBN10: 1860943497

  61. Parlinski K, Kawazoe Y (2000) Ab initio study of phonons and structural stabilities of the perovskite-type MgSiO3. Eur Phys J B 16:49–58

    Article  CAS  Google Scholar 

  62. Momida H, Hamada T, Takagi Y, Yamamoto T, Uda T, Ohno T (2007) Dielectric constants of amorphous hafnium aluminates: first-principles study. Phys Rev B 75:195105

    Article  CAS  Google Scholar 

  63. Kronig RL (1926) On the theory of dispersion of X-rays. J Opt Soc Amer 12:547–557

    Article  CAS  Google Scholar 

  64. Penn DR (1962) Wave-number-dependent dielectric function of semiconductors. Phys Rev B 128:2093

    Article  CAS  Google Scholar 

  65. John R, Merlin B (2017) Optical properties of graphene, silicene, germanene, and stanene from IR to far UV–a first-principles study. J Phys Chem of Sol 110:307

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Rajiv Shekhar, Director of IIT(ISM), Dhanbad, for his continuous encouragement throughout the work. The authors are also thankful to Ms. Bharthi Gajendra for helping in the preparation of the manuscript and calculation.

Author information

Authors and Affiliations

Authors

Contributions

Authors have equal contribution in preparing the manuscript.

Corresponding author

Correspondence to V. Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Santosh, R. The stability, structural, electronic, and optical properties of hydrogenated silicene under hydrostatic pressures: a first-principle study. J Mol Model 27, 278 (2021). https://doi.org/10.1007/s00894-021-04895-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04895-x

Keywords

Navigation