Skip to main content
Log in

Evaluation of the excited state dynamics, photophysical properties, and the influence of donor substitution in a donor-\(\pi\)-acceptor system

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

There have been numerous attempts for the theoretical design of a better donor-\(\pi\)-acceptor structural framework with improved absorption and emission properties. However, for effective dye designing, it is necessary to understand the electronic and photophysical properties of the dye systems. In this work, we report a detailed density functional theory (DFT) and time-dependent density functional theory (TD-DFT) investigations of the excited state characteristics and the influence of various groups (–HCO, =CH2, (–CH3)2, (HCO)2, and (–OCH3)2) attached to the donor group (–NH2) in a p-nitroaniline D-\(\pi\)-A system which are symbolized respectively as p-nitroaniline (A), N,N-dimethylnitroaniline (A2), N,N-dicarbonylnitroaniline (A3), N-methylenenitroaniline (A4), and N,N-dimethoxynitroaniline (A5). The first principles DFT and TD-DFT calculations from the ground state (S0) to the first five excited states: (S0→S1), (S0→S2), (S0→S3), (S0→S4), and (S0→S5) were utilized to explore the reactivity of D-\(\pi\)-A system using the conceptual DFT approach, characterization of electron excitation using the hole-electron analysis, visual study of the various real space functions in the hole-electron framework, density of states (DOS), measurement of charge transfer (CT) length of electron excitation (\(\Delta r\)), measurement of the overlapping degrees of hole and electron of electron excitation (\(\Lambda\)), interfragment charge transfer (IFCT) during electron excitation, and the second-order perturbation energy analysis from the natural bond orbitals (NBO) computation. Results of the excitation studies show that all the studied compounds exhibited an n→\(\pi\)* localized type for first excitations (S0→S1) on –NO2 group in A, A2, A4, and A5 and –NCl2 in A3. \(\pi\)\(\pi\)* charge transfer excitations were confirmed for S0→S2/S4/S5 in A and A2, S0→S3/S4/S5 in A3 and A5, and S0→S4/S5 in A4. The NBO second-order perturbation energy analysis suggest that the most significant hyperconjugative interactions were \(\uppi ({C}1-{C}2)\to {LP}* (1){ C}6\) (54.43kcal/mol), \({\pi C}1-{C}2\to {LP }(1){C}3\) (40.82kcal/mol), \({\pi N}14-{O}16\to {LP }(3){ O}15\) (11.67kcal/mol), \(\uppi ({C}1-{C}6)\to\uppi *({N}12-{O}13)\) (29.52kcal/mol), \(\uppi ({N}12-{O}13)\to {LP }(3){ O}14\) (11.55kcal/mol), \(\uppi ({C}3-{C}4)\to\uppi *({C}5-{C}6)\) (23.40kcal/mol), and \(\uppi ({C}5-{C}6)\to\uppi *({N}12-{O}14)\) (24.88kcal/mol) \(\uppi ({C}3-{C}4)\to\uppi *({C}5-{C}6)\)(24.64kcal/mol), which respectively corresponds to the A, A2, A3, A4, and A5 D-\(\pi\)-A systems under investigation, and these strong interactions stabilize the systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data are contained within the manuscript and the supporting information.

Code availability

N/A.

References

  1. Derevyanko NA, Ishchenko AA, Kulinich AV (2020) Deeply coloured and highly fluorescent dipolar merocyanines based on tricyanofuran. Physical Chemistry Chemical Physics 22(5):2748–2762

    Article  CAS  PubMed  Google Scholar 

  2. Sang S, Chen F, Zhang C (2020) Theoretical investigation of aromaticity and charge transfer in emission process of triarylmethyl radicals as OLED materials. Int J Quantum Chem 1–11

  3. Joseph I, Louis H, Unimuke TO, Etim IS, Orosun MM, Odey J (2020) An Overview of the Operational Principles, Light Harvesting and Trapping Technologies, and Recent Advances of the Dye-Sensitized Solar Cells. Applied Solar Energy 56(5):334–363

    Article  Google Scholar 

  4. Chen G, Sasabe H, Igarashi T, Hong Z, Kido J (2015) Squaraine dyes for organic photovoltaic cells. J Mater Chem A 3(28):14517–14534

    Article  CAS  Google Scholar 

  5. Tromayer M, Gruber P, Rosspeintner A, Ajami A, Husinsky W, Plasser F, Liska R (2018) Wavelength-optimized two-photon polymerization using initiators based on multipolar aminostyryl-1, 3, 5-triazines. Sci Rep 8(1):1–11

    Article  CAS  Google Scholar 

  6. Beltrán CC, Palmer EA, Buckley BR, Iza F (2015) Virtues and limitations of Pittsburgh green for ozone detection. Chem Commun 51(9):1579–1582

    Article  CAS  Google Scholar 

  7. Glöcklhofer F, Rosspeintner A, Pasitsuparoad P, Eder S, Froehlich J, Angulo G, Plasser F (2019) Effect of symmetric and asymmetric substitution on the optoelectronic properties of 9, 10-dicyanoanthracene. Mol Sys Des Eng 4(4):951–961

    Article  Google Scholar 

  8. Hewitt SH, Butler SJ (2018) Application of lanthanide luminescence in probing enzyme activity. Chem Commun 54(50):6635–6647

    Article  CAS  Google Scholar 

  9. Gu Y, Li N, Shao G, Wang K, Zou B (2020) Mechanism of different piezoresponsive luminescence of 2, 3, 4, 5-Tetraphenylthiophene and 2, 3, 4, 5-Tetraphenylfuran: a strategy for designing pressure-induced emission enhancement materials. J Phy Chem Lett 11(3):678–682

    Article  CAS  Google Scholar 

  10. Zhao F, Wang C, Zhan X (2018) Morphology control in organic solar cells. Adv Energy Mater 8(28):1703147

    Article  CAS  Google Scholar 

  11. Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Grätzel M (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun 41:5194–5196

    Article  CAS  Google Scholar 

  12. Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22(5):1915–1925

    Article  CAS  Google Scholar 

  13. Kakiage K, Aoyama Y, Yano T, Otsuka T, Kyomen T, Unno M, Hanaya M (2014) An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell. Chem Commun 50(48):6379–6381

    Article  CAS  Google Scholar 

  14. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247

    Article  CAS  PubMed  Google Scholar 

  15. Nagarajan B, Kushwaha S, Elumalai R, Mandal S, Ramanujam K, Raghavachari D (2017) Novel ethynyl-pyrene substituted phenothiazine based metal free organic dyes in DSSC with 12% conversion efficiency. J Mater Chem A 5(21):10289–10300

    Article  CAS  Google Scholar 

  16. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa JI, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897

    Article  CAS  Google Scholar 

  17. Venkateswararao A, Thomas KJ, Lee CP, Li CT, Ho KC (2014) Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties. ACS Appl Mater Interfaces 6(4):2528–2539

    Article  CAS  PubMed  Google Scholar 

  18. Liyanage NP, Yella A, Nazeeruddin M, Grätzel M, Delcamp JH (2016) Thieno [3, 4-b] pyrazine as an Electron Deficient π-Bridge in D-A− π–A DSCs. ACS Appl Mater Interfaces 8(8):5376–5384

    Article  CAS  PubMed  Google Scholar 

  19. Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Arakawa H (2003) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem 27(5):783–785

    Article  CAS  Google Scholar 

  20. Teng C, Yang X, Yang C, Tian H, Li S, Wang X, Sun L (2010) Influence of triple bonds as π-spacer units in metal-free organic dyes for dye-sensitized solar cells. J Phys Chem C 114(25):11305–11313

    Article  CAS  Google Scholar 

  21. Baheti A, Lee CP, Thomas KJ, Ho KC (2011) Pyrene-based organic dyes with thiophene containing π-linkers for dye-sensitized solar cells: optical, electrochemical and theoretical investigations. Physical Chemistry Chemical Physics 13(38):17210–17221

    Article  CAS  PubMed  Google Scholar 

  22. Srinivas K, Kumar CR, Reddy MA, Bhanuprakash K, Rao VJ, Giribabu L (2011) D-π-A organic dyes with carbazole as donor for dye-sensitized solar cells. Synth Met 161(1–2):96–105

    Article  CAS  Google Scholar 

  23. Divya VV, Suresh CH (2020) Density functional theory study on the donating strength of donor systems in dye-sensitized solar cells. New J Chem 44(17):7200–7209

    Article  CAS  Google Scholar 

  24. Banjo SEMIRE, Kolawole OA, Ayobami OO (2020) Electronic properties’ modulation of DAA via fluorination of 2-cyano-2-pyran-4-ylidene-acetic acid acceptor unit for efficient DSSCs: DFT-TDDFT approach. Sci Afr e00287

  25. El Mzioui S, Bouzzine SM, Sidir İ, Bouachrine M, Bennani MN, Bourass M, Hamidi M (2019) Theoretical investigation on π-spacer effect of the D–π–A organic dyes for dye-sensitized solar cell applications: a DFT and TD-BHandH study. J Mol Model 25(4):92

    Article  PubMed  CAS  Google Scholar 

  26. Tripathi A, Ganjoo A, Chetti P (2020) Influence of internal acceptor and thiophene based π-spacer in DA-π-A system on photophysical and charge transport properties for efficient DSSCs: A DFT insight. Solar Energy 209:194–205

    Article  CAS  Google Scholar 

  27. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  28. Trucks GW, Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowskiand J, Fox J (2013) Gaussian09, Revision D. 01. Gaussian Inc., Wallingford

    Google Scholar 

  29. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  CAS  Google Scholar 

  30. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050

    Article  CAS  Google Scholar 

  31. Fu R, Lu T, Chen FW (2014) Comparing methods for predicting the reactive site of electrophilic substitution. Acta Phys Chim Sin 30(4):628–639

    Article  CAS  Google Scholar 

  32. Wang B, Rong C, Chattaraj PK, Liu S (2019) A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge. Theor Chem Acc 138(12):124

    Article  CAS  Google Scholar 

  33. Kong LX, Zhang CS, Xia QY, Ju XH (2020) Theoretical study of the effect of π-linkers on triarylamine-based p-type D-π-A sensitiser. Mol Simul 46(2):128–135

    Article  CAS  Google Scholar 

  34. Sun L, Zhang T, Zhu B, Wu C, Yan L, Su Z (2017) Theoretical design and study on hexamolybdate-based organic-inorganic hybrids with double D-π-A chains for high performance p-type dye-sensitized solar cells (DSSCs). Dyes Pigments 137:372–377

    Article  CAS  Google Scholar 

  35. Ho P, Chitumalla RK, Jang J, Thogiti S, Kim JH (2018) Single and double branched organic dyes based on carbazole and red-absorbing cationic indolium for p-type dye-sensitized solar cells: a combined experimental and theoretical investigation. Dyes Pigments 149:25–36

    Article  CAS  Google Scholar 

  36. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo [18] carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon

  37. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7(8):2498–2506

    Article  PubMed  CAS  Google Scholar 

  38. Guido CA, Cortona P, Mennucci B, Adamo C (2013) On the metric of charge transfer molecular excitations: a simple chemical descriptor. J Chem Theory Comput 9(7):3118–3126

    Article  CAS  PubMed  Google Scholar 

  39. Agwupuye JA, Louis H, Unimuke TO, David P, Ubana EI, Moshood YL (2021) Electronic structure investigation of the stability, reactivity, NBO analysis, thermodynamics, and the nature of the interactions in methyl-substituted imidazolium-based ionic liquids. J Mol Liq 337

  40. Kraner S, Prampolini G, Cuniberti G (2017) Exciton binding energy in molecular triads. J Phys Chem C 121(32):17088–17095

    Article  CAS  Google Scholar 

  41. Zhang Y, Shen C, Lu X, Mu X, Song P (2020) Effects of defects in g-C3N4 on excited-state charge distribution and transfer: potential for improved photocatalysis. Spectrochim Acta A Mol Biomol Spectrosc 227:117687

    Article  CAS  PubMed  Google Scholar 

  42. Liu Z, Hua S, Wu G (2018) Extended first hyperpolarizability of quasi-octupolar molecules by halogenated methylation: whether the iodine atom is the best choice. J Phys Chem C 122(37):21548–21556

    Article  CAS  Google Scholar 

  43. Louis H, Guo LJ, Zhu S, Hussain S, He T (2019) Computational study on interactions between CO2 and (TiO2) n clusters at specific sites. Chin J Chem Phys 32(6):674–686

    Article  CAS  Google Scholar 

  44. Li Y, Li X, Xu Y (2020) Theoretical insights into the effect of pristine, doped and hole graphene on the overall performance of dye-sensitized solar cells. Inorg Chem Front 7(1):157–168

    Article  CAS  Google Scholar 

  45. Peach MJ, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128(4):044118

    Article  PubMed  CAS  Google Scholar 

  46. Louis H, Enudi OC, Odey JO, Onyebuenyi IB, Igbalagh AT, Unimuke TO, Ntui TN (2021) Synthesis, characterization, DFT, and TD-DFT studies of (E)-5-((4, 6-dichloro-1, 3, 5-triazin-2-yl) amino)-4-hydroxy-3-(phenyldiazenyl) naphthalene-2, 7-diylbis (hydrogen sulfite). SN Applied Sciences 3(7):1–14

    Article  CAS  Google Scholar 

  47. Bisong EA, Louis H, Unimuke TO, Odey JO, Ubana EI, Edim MM, Utsu PM (2020) Vibrational, electronic, spectroscopic properties, and NBO analysis of p-xylene, 3, 6-difluoro-p-xylene, 3, 6-dichloro-p-xylene and 3, 6-dibromo-pxylene: DFT study. Heliyon 6(12):e05783

  48. Enudi OC, Louis H, Edim MM, Agwupuye JA, Ekpen FO, Bisong EA, Utsu PM (2021) Understanding the aqueous chemistry of quinoline and the diazanaphthalenes: insight from DFT study. Heliyon 7(7):e07531

  49. Liu D, Gui Y, Ji C, Tang C, Zhou Q, Li J, Zhang X (2019) Adsorption of SF6 decomposition components over Pd (1 1 1): a density functional theory study. Appl Surf Sci 465:172–179

    Article  CAS  Google Scholar 

  50. Iagatti A, Patrizi B, Basagni A, Marcelli A, Alessi A, Zanardi S, Foggi P (2017) Photophysical properties and excited state dynamics of 4, 7-dithien-2-yl-2, 1, 3-benzothiadiazole. Phys Chem Chem Phys 19(21):13604–13613

    Article  CAS  PubMed  Google Scholar 

  51. Chi CC, Chiang CL, Liu SW, Yueh H, Chen CT, Chen CT (2009) Achieving high-efficiency non-doped blue organic light-emitting diodes: charge-balance control of bipolar blue fluorescent materials with reduced hole-mobility. J Mater Chem 19(31):5561–5571

    Article  CAS  Google Scholar 

  52. Qian H, Deng J, Zhou H, Yang X, Chen W (2019) First-principles study of Pd-MoSe2 as sensing material for characteristic SF6 decomposition components. AIP Adv 9(12):125013

    Article  CAS  Google Scholar 

  53. Ooyama Y, Inoue S, Nagano T, Kushimoto K, Ohshita J, Imae I, Harima Y (2011) Dye-sensitized solar cells based on donor–acceptor π-conjugated fluorescent dyes with a pyridine ring as an electron-withdrawing anchoring group. Angewandte Chemie International Edition 50(32):7429–7433

    Article  CAS  PubMed  Google Scholar 

  54. Hosseinzadeh B, Beni AS, Azari M, Zarandi M, Karami M (2016) Novel D–π–A type triphenylamine based chromogens for DSSC: design, synthesis and performance studies. New Journal of Chemistry 40(10):8371–8381

    Article  CAS  Google Scholar 

  55. Patil D, Jadhav M, Avhad K, Chowdhury TH, Islam A, Bedja I, Sekar N (2018) A new class of triphenylamine-based novel sensitizers for DSSCs: a comparative study of three different anchoring groups. New Journal of Chemistry 42(14):11555–11564

    Article  CAS  Google Scholar 

  56. Kataria S, Rhyman L, Ramasami P, Sekar N (2016) Comprehensive DFT and TD-DFT studies on the photophysical properties of 5, 6-dichloro-1, 3-Bis (2-Pyridylimino)-4, 7-Dihydroxyisoindole: a new class of ESIPT fluorophore. J Fluoresc 26(5):1805–1812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Although this research was not funded by any external funding agencies, however, the authors are unanimously thankful for the support of all the members of the Computational and Bio-Simulation research group, University of Calabar, Calabar, for their immense research contributions.

Author information

Authors and Affiliations

Authors

Contributions

Hitler Louis conceptualizes, designs, and supervised the entire research. Linda P. Ifediora and Obieze C. Enudi conducted the results analysis and drafted the first manuscript, while Tomsmith O. Unimuke conducted the theoretical calculations and results analysis. Fredrick C. Asogwa proofread the manuscript, made corrections, and provided useful suggestions. Yusuff L. Moshood provided software and conducted the Frank–Condon geometry optimization.

Corresponding author

Correspondence to Hitler Louis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

894_2021_4875_MOESM1_ESM.docx

Supplementary file1 The supporting information document contains the tables and figures for the Fukui functions, dual descriptors, electrophilicity, nucleophilicity, softness, quantum chemical descriptors, isosurface of hole-electron, hole-electron centroids (C), overlap function (Sr), charge transfer (CT) length of electron excitation (∆r), and the overlapping degrees of hole and electron of electron excitation (Λ) of the A, A2, A3, A4, and A5 molecules. (DOCX 3980 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louis, H., Ifediora, L.P., Enudi, O.C. et al. Evaluation of the excited state dynamics, photophysical properties, and the influence of donor substitution in a donor-\(\pi\)-acceptor system. J Mol Model 27, 284 (2021). https://doi.org/10.1007/s00894-021-04875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04875-1

Keywords

Navigation