Skip to main content
Log in

Theoretical study on the noncovalent interactions involving triplet diphenylcarbene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The properties of some types of noncovalent interactions formed by triplet diphenylcarbene (DPC3) have been investigated by means of density functional theory (DFT) calculations and quantum theory of atoms in molecule (QTAIM) studies. The DPC3···LA (LA = AlF3, SiF4, PF5, SF2, ClF) complexes have been analyzed from their equilibrium geometries, binding energies, and properties of electron density. The triel bond in the DPC3···AlF3 complex exhibits a partially covalent nature, with the binding energy − 65.7 kJ/mol. The tetrel bond, pnicogen bond, chalcogen bond, and halogen bond in the DPC3···LA (LA = SiF4, PF5, SF2, ClF) complexes show the character of a weak closed-shell noncovalent interaction. Polarization plays an important role in the formation of the studied complexes. The strength of intermolecular interaction decreases in the order LA = AlF3 > ClF > SF2 > SiF4 > PF5. The electron spin density transfers from the radical DPC3 to ClF and SF2 in the formation of halogen bond and chalcogen bond, but for the DPC3···AlF3/SiF4/PF5 complexes, the transfer of electron spin density is minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The manuscript has full control of all primary data, and the authors agree to allow the journal to review their data if requested.

References

  1. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–168

    Article  PubMed  CAS  Google Scholar 

  2. Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press

  3. Scheiner S (2019) Forty years of progress in the study of the hydrogen bond. Struct Chem 30:1119–1128

    Article  CAS  Google Scholar 

  4. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Wang W, Jin WJ (2016) σ-Hole bond vs π-hole bond: a comparison based on halogen bond. Chem Rev 116:5072–5104

    Article  CAS  PubMed  Google Scholar 

  6. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  PubMed  Google Scholar 

  7. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  PubMed  Google Scholar 

  8. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:278–294

    Article  CAS  PubMed  Google Scholar 

  9. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  PubMed  Google Scholar 

  10. Politzer P, Murray JS, Clark T, Resnati G (2017) The σ-hole revisited. Phys Chem Chem Phys 19:32166–32178

    Article  CAS  PubMed  Google Scholar 

  11. Politzer P, Murray JS (2019) An overview of strengths and directionalities of noncovalent interactions: σ-holes and π-holes. Crystals 9:165

    Article  CAS  Google Scholar 

  12. Politzer P, Murray JS (2020) Electrostatics and polarization in σ- and π-hole noncovalent interactions: an overview. ChemPhysChem 21:579–588

    Article  CAS  PubMed  Google Scholar 

  13. Yáñez M, Sanz P, Mó O, Alkorta I, Elguero J (2009) Beryllium bonds, do they exist? J Chem Theor Comput 5:2763–2771

    Article  CAS  Google Scholar 

  14. Grabowski SJ (2014) Boron and other triel Lewis acid centers: from hypovalency to hypervalency. ChemPhysChem 15(14):2985–2993

    Article  CAS  PubMed  Google Scholar 

  15. Gao L, Zeng Y, Zhang X, Meng L (2016) Comparative studies on group III σ-hole and π-hole interactions. J Comput Chem 37(14):1321–1327

    Article  CAS  PubMed  Google Scholar 

  16. Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: rediscovered supramolecular force? Angew Chem Int Ed 52(47):12317–12321

    Article  CAS  Google Scholar 

  17. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17(22):6034–6038

    Article  CAS  PubMed  Google Scholar 

  18. Wang W, Ji B, Zhang Y (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113:8132–8135

    Article  PubMed  CAS  Google Scholar 

  19. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bauzá A, Frontera A (2015) Aerogen bonding interaction: a new supramolecular force? Angew Chem Int Ed 54:7340–7343

    Article  CAS  Google Scholar 

  21. Cavallo G, Metrangolo P, Pilati T, Resnati G, Terraneo G (2014) Naming interactions from the electrophilic site. Cryst Growth Des 14:2697–2702

    Article  CAS  Google Scholar 

  22. Legon AC (2017) Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: a systematic look at non-covalent interactions. Phys Chem Chem Phys 19(23):14884–14896

    Article  CAS  PubMed  Google Scholar 

  23. Legon AC, Walker NR (2018) What’s in a name? ‘Coinage-metal’ non-covalent bonds and their definition. Phys Chem Chem Phys 20:19332–19338

    Article  CAS  PubMed  Google Scholar 

  24. Cui J, Zhang X, Meng L, Li Q, Zeng Y (2019) Coinage metal dimers as the noncovalent interaction acceptors: study of the σ-lump interactions. Phys Chem Chem Phys 21:21152–21161

    Article  CAS  PubMed  Google Scholar 

  25. Zheng B, Liu Y, Wang Z, Zhou F, Jiao Y, Liu Y, Ding X, Li Q (2018) Comparison of halide donators based on pi···M (M=Cu, Ag, Au), pi···H and pi···halogen bonds. Theor Chem Acc 137:179

    Article  CAS  Google Scholar 

  26. Moss RA, Doyle MP (2014) Contemporary carbene chemistry. Wiley, Hoboken

  27. Alkorta I, Elguero J (1996) Carbenes and silylenes as hydrogen bond acceptors. J Phys Chem 100:19367–71930

    Article  CAS  Google Scholar 

  28. Del Bene JE, Alkorta I, Elguero J (2017) Carbenes as electron-pair donors for P···C pnicogen bonds. ChemPhysChem 18(12):1597–1610

    Article  PubMed  CAS  Google Scholar 

  29. Alkorta I, Montero-Campillo MM, Elguero J (2017) Trapping CO2 by adduct formation with nitrogen heterocyclic carbenes (NHCs): a theoretical study. Chem-Eur J 23(44):10604–10609

    Article  CAS  PubMed  Google Scholar 

  30. Del Bene JE, Alkorta I, Elguero J (2017) Carbon–carbon bonding between nitrogen heterocyclic carbenes and CO2. J Phys Chem A 121(42):8136–8146

    Article  PubMed  CAS  Google Scholar 

  31. Li Q, Wang H, Liu Z, Li W, Sun J (2009) Ab initio study of lithium-bonded complexes with carbene as an electron donor. J Phys Chem A 113(51):14156–14160

    Article  CAS  PubMed  Google Scholar 

  32. Zhuo H, Li Q (2015) Novel pnicogen bonding interactions with silylene as an electron donor: covalency, unusual substituent effects and new mechanisms. Phys Chem Chem Phys 17(14):9153–9160

    Article  CAS  PubMed  Google Scholar 

  33. Liu M, Li Q, Li W, Cheng J (2017) Carbene tetrel-bonded complexes. Struct Chem 28(3):823–831

    Article  CAS  Google Scholar 

  34. Chi Z, Dong W, Li Q, Yang X, Scheiner S, Liu S (2019) Carbene triel bonds between TrR3 (Tr = B, Al) and N-heterocyclic carbenes. Int J Quantum Chem 119(8):e25867

    Article  CAS  Google Scholar 

  35. Lin H, Meng L, Li X, Zeng Y, Zhang X (2019) Comparison of pnicogen and tetrel bonds in complexes containing CX2 carbenes (X = F, Cl, Br, OH, OMe, NH2, and NMe2). New J Chem 43:15596–15604

    Article  CAS  Google Scholar 

  36. Costa P, Fernandez-Oliva M, Sanchez-Garcia E, Sander W (2014) The highly reactive benzhydryl cation isolated and stabilized in water ice. J Am Chem Soc 136:15625–15630

    Article  CAS  PubMed  Google Scholar 

  37. Costa P, Sander W (2014) Hydrogen bonding switches the spin state of diphenylcarbene from triplet to singlet. Angew Chem Int Ed 53:5122–5125

    CAS  Google Scholar 

  38. Henkel S, Costa P, Klute L, Sokkar P, Fernandez-Oliva M, Thiel W, Sanchez-Garcia E, Sander W (2016) Switching the spin state of diphenylcarbene via halogen bonding. J Am Chem Soc 138(5):1689–1697

    Article  CAS  PubMed  Google Scholar 

  39. Ge Y, Lu Y, Xu Z, Liu H (2018) Controlling the spin state of diphenylcarbene via halogen bonding: a theoretical study. Int J Quantum Chem 118(15):e25616

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Ma R, Cheeseman JR, Scamani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, BloinoJ ZG, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian09. Gaussian Inc., Wallingford

  41. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  42. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691

    Article  CAS  PubMed  Google Scholar 

  43. Keith TA (2015) Computational improvements for the theory of atoms in molecules. AIMAll (Version 15.09.27), TK Gristmill Software, Overland Park KS

  44. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  CAS  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  46. Scheiner S (2018) Steric crowding in tetrel bonds. J Phys Chem A 122:2550–2562

    Article  CAS  PubMed  Google Scholar 

  47. Scheiner S, Lu J (2018) Halogen, chalcogen, and pnicogen bonding involving hypervalent atoms. Chem Eur J 24:8167–8177

    Article  CAS  PubMed  Google Scholar 

  48. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  51. Becke A, Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley, New York

  52. Zeng Y, Zhang X, Li X, Meng L, Zheng S (2011) The role of molecular electrostatic potentials in the formation of a halogen bond in Furan···XY and Thiophene···XY complexes. ChemPhysChem 12:1080–1087

    Article  CAS  PubMed  Google Scholar 

  53. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  54. Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phy Chem A 116:1838–1845

    Article  CAS  Google Scholar 

  55. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed 23(23):627–628

    Article  Google Scholar 

  56. Bone RGA, Bader RFW (1996) Identifying and analyzing intermolecular bonding interactions in van der Waals molecules. J Phys Chem 100(26):10892–10911

    Article  CAS  Google Scholar 

  57. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  PubMed  CAS  Google Scholar 

  58. Zheng S, Hada M, Nakatsuji H (1996) Topology of density difference and force analysis. Theor Chim Acta 93:67–78

    Article  CAS  Google Scholar 

  59. Li W, Zeng Y, Li X, Sun Z, Meng L (2016) Insight into the pseudo p-hole interactions in the M3H6(NCF)n (M = C, Si, Ge, Sn, Pb; n = 1, 2, 3) complexes. Phys Chem Chem Phys 18:24672–24680

    Article  CAS  PubMed  Google Scholar 

  60. Lu B, Zhang X, Meng L, Zeng Y (2017) Insight into π-hole interactions containing the inorganic heterocyclic compounds S2N2/SN2P2. J Mol Model 23:233

    Article  PubMed  CAS  Google Scholar 

Download references

Code availability

N/A.

Funding

This work was supported by the National Natural Science Foundation of China (Contract no. 21973027 of Prof. Xiaoyan Li), Natural Science Foundation of Hebei Province (Contract no. B2020205002 of Prof. Xiaoyan Li), and the Foundation of Hebei Normal University (Contract no. L2018Z04 of Dr. Xueying Zhang).

Author information

Authors and Affiliations

Authors

Contributions

Chunhong Zhao: investigation and writing—original draft; Hui Lin: formal analysis and data curation; Aiting Shan: visualization; Shaofu Guo: writing—review and editing; Xiaoyan Li: methodology and supervision; Xueying Zhang: conceptualization and supervision.

Corresponding author

Correspondence to Xueying Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

Written informed consent for publication was obtained from all participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Lin, H., Shan, A. et al. Theoretical study on the noncovalent interactions involving triplet diphenylcarbene. J Mol Model 27, 224 (2021). https://doi.org/10.1007/s00894-021-04838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04838-6

Keywords

Navigation