Skip to main content
Log in

Effect of copper concentration and sulfur vacancies on electronic properties of MoS2 monolayer: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We investigated the geometrical and electronic properties of copper-doped MoS2 by first principles calculations. The doping is done by Cu substitution with Mo (1 to 4 atoms) accompanied by study of S vacancies. Our outcomes show that the concentration of doping and vacancy of S leads to determine and finely tune the band gap in the range of 0.16 to 1.95 eV. This fine tuning of band gap results due to variation in concentration of impurity, changing dopant site, and production of S vacancies. The resulting arrangements show significant charge redistribution on replacement of local atoms with foreign atoms dictated by electronegativity determined from the Bader analysis. In addition, bonding mechanism occurring due to substitution of foreign elements is discussed. These results give pleasing data regarding fine desired value of the band gap of the MoS2 which helps its utilization in semiconductor and other opto-electronic devices in addition to understanding the electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Takada K et al (2003) Superconductivity in two-dimensional CoO2 layers. Nature 422:53–55

    Article  CAS  PubMed  Google Scholar 

  2. Shishidou T, Freeman AJ, Asahi R (2001) Effect of GGA on the half-metallicity of the itinerant ferromagnet (formula presented). Phys Rev B - Condens Matter Mater Phys 64:2–5

    Article  Google Scholar 

  3. Jiang C et al (2018) Robust half-metallic magnetism in two-dimensional Fe/MoS2. J Phys Chem C 122:21617–21622

    Article  CAS  Google Scholar 

  4. Reed CA, Cheung SK (1977) On the bonding of FeOsub 2 in hemoglobin and related dioxygen complexes. Proc Natl Acad Sci U S A 74:1780–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puthussery J, Seefeld S, Berry N, Gibbs M, Law M (2011) Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics. J Am Chem Soc 133:716–719

    Article  CAS  PubMed  Google Scholar 

  6. Tang Q, Zhou Z, Chen Z (2015) Innovation and discovery of graphene-like materials via density-functional theory computations. Wiley Interdiscip Rev Comput Mol Sci 5:360–379

    Article  CAS  Google Scholar 

  7. Roy K et al (2013) Graphene-MoS 2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol 8:826–830

    Article  CAS  PubMed  Google Scholar 

  8. Qiu DY, Da Jornada FH, Louie SG (2013) Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett 111:1–5

    Article  Google Scholar 

  9. Zhang W et al (2015) Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci Rep 4:1–8

    Google Scholar 

  10. Tongay S et al (2013) Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 13:2831–2836

    Article  CAS  PubMed  Google Scholar 

  11. Kan M et al (2014) Structures and phase transition of a MoS2 monolayer. J Phys Chem C 118:1515–1522

    Article  CAS  Google Scholar 

  12. Ding S, Zhang D, Chen JS, Lou XW (2012) Facile synthesis of hierarchical MoS 2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4:95–98

    Article  CAS  PubMed  Google Scholar 

  13. Wi S et al (2014) Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 8:5270–5281

    Article  CAS  PubMed  Google Scholar 

  14. Wu W et al (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:470–474

    Article  CAS  PubMed  Google Scholar 

  15. Ma D et al (2015) CO catalytic oxidation on iron-embedded monolayer MoS 2. Appl Surf Sci 328:71–77

    Article  CAS  Google Scholar 

  16. Shi J, Ma D, Zhang Y, Liu Z (2015) Controllable growth of MoS2 on Au foils and its application in hydrogen evolution. Acta Chim Sin 73:877–885

    Article  CAS  Google Scholar 

  17. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS 2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969

    Article  CAS  PubMed  Google Scholar 

  18. Lukowski MA et al (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    Article  CAS  PubMed  Google Scholar 

  19. Hussain A, Tayyab M (2020) Effect of cu concentration and dopant site on the band gap of MoS2: a DFT study. Comput Condens Matter 24:e00494

    Article  Google Scholar 

  20. Maiti UN et al (2014) 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv Mater 26:40–67

    Article  CAS  PubMed  Google Scholar 

  21. Paniagua SA et al (2014) Production of heavily n- and p-doped CVD graphene with solution-processed redox-active metal-organic species. Mater Horizons 1:111–115

    Article  CAS  Google Scholar 

  22. Chen W, Qi D, Gao X, Wee ATS (2009) Surface transfer doping of semiconductors. Prog Surf Sci 84:279–321

    Article  CAS  Google Scholar 

  23. Tarasov A et al (2015) Controlled doping of large-area trilayer MoS2with molecular reductants and oxidants. Adv Mater 27:1175–1181

    Article  CAS  PubMed  Google Scholar 

  24. Dolui K, Rungger I, Das Pemmaraju C, Sanvito S (2013) Possible doping strategies for MoS2 monolayers: an ab initio study. Phys Rev B - Condens Matter Mater Phys 88:1–9

    Article  Google Scholar 

  25. Wang H et al (2015) Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res 8:566–575

    Article  CAS  Google Scholar 

  26. Ramasubramaniam A, Naveh D (2013) Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys Rev B - Condens Matter Mater Phys 87:1–7

    Article  Google Scholar 

  27. Lu SC, Leburton JP (2014) Electronic structures of defects and magnetic impurities in MoS2 monolayers. Nanoscale Res Lett 9

  28. Joseph D et al (2020) Thermoelectric performance of cu-doped MoS2 layered nanosheets for low grade waste heat recovery. Appl Surf Sci 505:144066

    Article  CAS  Google Scholar 

  29. Da Cunha WF et al (2019) Tuning the electronic structure properties of MoS2 monolayers with carbon doping. Phys Chem Chem Phys 21:11168–11174

    Article  PubMed  Google Scholar 

  30. Kresse G, Furthmüller J, Hafner J (1994) Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys Rev B 50:13181–13185

    Article  CAS  Google Scholar 

  31. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396–1396

    Article  CAS  Google Scholar 

  33. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  34. Sun M et al (2017) Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study. Carbon 120

  35. Jing Y, Tan X, Zhou Z, Shen P (2014) Tuning electronic and optical properties of MoS2 monolayer via molecular charge transfer. J Mater Chem A 2:16892–16897

    Article  CAS  Google Scholar 

  36. Hussain A, Tayyab M (2020) Effect of cu concentration and dopant site on the band gap of MoS2: a DFT study. Comput Condens Matter 24:e00494

    Article  Google Scholar 

  37. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter 21

  38. Kang J, Liu W, Sarkar D, Jena D, Banerjee K (2014) Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X 4

  39. Ahmed S et al (2017) Inducing high coercivity in MoS2 nanosheets by transition element doping. Chem Mater 29:9066–9074

    Article  CAS  Google Scholar 

  40. Andriotis AN, Menon M (2014) Tunable magnetic properties of transition metal doped MoS2. Phys Rev B - Condens Matter Mater Phys 90

  41. Gui G, Li J, Zhong J (2008) Band structure engineering of graphene by strain: first-principles calculations. Phys Rev B - Condens Matter Mater Phys 78:1–6

    Article  Google Scholar 

  42. Feng LP, Su J, Liu ZT (2015) Effect of vacancies in monolayer MoS2 on electronic properties of Mo-MoS2 contacts. RSC Adv 5:20538–20544

    Article  CAS  Google Scholar 

  43. Ma D et al (2016) Modulating electronic, magnetic and chemical properties of MoS 2 monolayer sheets by substitutional doping with transition metals. Appl Surf Sci 364:181–189

    Article  CAS  Google Scholar 

  44. Asif QulA, Hussain A, Rafique HM, Tayyab M (2020) Computational study of Be-doped hexagonal boron nitride (h-BN): structural and electronic properties. Comput Condens Matter e00474. https://doi.org/10.1016/J.COCOM.2020.E00474

  45. Tayyab M, Hussain A, Adil W, Nabi S, Asif Q u A (2020) Band-gap engineering of graphene by Al doping and adsorption of Be and Br on impurity: a computational study. Comput Condens Matter 23:e00463

    Article  Google Scholar 

  46. Qin S, Lei W, Liu D, Chen Y (2014) In-situ and tunable nitrogen-doping of MoS2 nanosheets. Sci Rep 4:1–5

    Article  Google Scholar 

  47. Andriotis AN, Menon M (2014) Tunable magnetic properties of transition metal doped MoS2. Phys Rev B - Condens Matter Mater Phys 90:1–7

    Article  Google Scholar 

  48. Tayyab M, Hussain A, Asif Q u A, Adil W (2020) Band-gap tuning of graphene by Mg doping and adsorption of Br and Be on impurity: A DFT study. Comput Condens Matter 23:e00469

    Article  Google Scholar 

  49. Asif Q u A, Hussain A, Rafique HM, Tayyab M (2020) Computational study of Be-doped hexagonal boron nitride (h-BN): Structural and electronic properties. Comput Condens Matter 23:e00474

    Article  Google Scholar 

  50. Zhao P et al (2017) Electronic and magnetic properties of re-doped single-layer MoS2: a DFT study. Comput Mater Sci 128:287–293

    Article  CAS  Google Scholar 

  51. Tsai C et al (2017) Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat Commun 8:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank University of Malakand KPK and Pakistan Institute of Nuclear Science & Technology Islamabad Pakistan for computational facilities. Finally, I would like to thank my wife for providing useful discussion on writing the manuscript.

Code availability

N/A

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Tayyab and Akhtar Hussain performed the material search, computational simulations, and analysis of the data and wrote the manuscript. Waqar Adil Syed, Shafqat Nabi, and Qurat ul Ain Asif remained involve in valuable discussion on the research work.

Corresponding author

Correspondence to Muhammad Tayyab.

Ethics declarations

Ethics approval

This study does not require any ethical clearance.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The participants have consented to the submission of the case report to the journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayyab, M., Hussain, A., Syed, W.A. et al. Effect of copper concentration and sulfur vacancies on electronic properties of MoS2 monolayer: a computational study. J Mol Model 27, 213 (2021). https://doi.org/10.1007/s00894-021-04834-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04834-w

Keywords

Navigation