Skip to main content
Log in

The Raman and IR vibration modes of metal pentazolate hydrates [Na(H2O)(N5)]·2H2O and [Mg(H2O)6(N5)2]·4H2O

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The detailed illustrations of the structures, elastic properties, and Raman and IR vibration modes for [Na(H2O)(N5)]·2H2O (a) and [Mg(H2O)6(N5)2]·4H2O (b) have been presented in this investigation by using the first-principles method based on the density functional theory. Our results indicate that the active centers of both two types of the energetic metal pentazolate hydrates appear on the cyclo-N5. The bonding character of N atoms in the cyclo-N5 is shown to be covalent, and the cyclo-N5 ring can be considered as an anion. Based on the analysis of elastic properties, we conclude that complex a is easier to deform than b, and both complexes are mechanically stable. From the calculated Raman and IR vibration modes, the vibration in the region of 960–1206 cm−1 (for a) and 985–1208 cm−1 (for b) is determined by basically mixing the cyclo-N5 stretching and deformation modes. The vibrational modes of a and b in their highest frequency zones are both related to the stretching of the O–H bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Christe KO (2007) Recent advances in the chemistry of N5+, N5 and high-oxygen compounds. Propellants Explos Pyrotech 32:194–204

    Article  CAS  Google Scholar 

  2. Hirshberg B, Gerber RB, Krylov AI (2014) Calculations predict a stable molecular crystal of N8. Nat Chem. 6:52–56

    Article  CAS  Google Scholar 

  3. Christe KO (2017) Polynitrogen chemistry enters the ring. Science 355:351

    Article  CAS  Google Scholar 

  4. Xu YG, Wang Q, Shen C, Lin QH, Wang PC, Lu M (2017) A series of energetic metal pentazolate hydrates. Nature 549:78–81

    Article  CAS  Google Scholar 

  5. Curtius T, Darapsky A, Müller E (1915) Die sogenannten Pentazol-Verbindungen von J. Lifschitz. Eur J Inorg Chem 48:1614–1634

    CAS  Google Scholar 

  6. Clusius K, Hürzeler H (1954) Reaktionen mit 15N. XII. Mechanismus der Phenylazidbildung bei der Diazoreaktion. Helvetica Chimica Acta 37:798–804

    Article  CAS  Google Scholar 

  7. Huisgen R, Ugi I (1956) Zur Lösung eines klassischen Problems der organischen Stickstoff-Chemie. Angew Chem. 68:705–706

    Article  CAS  Google Scholar 

  8. Huisgen R, Ugi I, Pentazole I (1957) Die Lösung Eines Klassischen Problems der Organischen Stickstoffchemie. Chemische Berichte 90:2914–2927

    Article  CAS  Google Scholar 

  9. Witanowski M, Stefaniak L, Januszewski H, Bahadur K (1975) Nitrogen-14 nmr evidence for the pentazole ring structure. J Cryst Mol Struct 5:137–140

    Article  CAS  Google Scholar 

  10. Müller R, Wallis JD, von Philipsborn W (1985) Direct structural proof for the pentazole ring system in solution by 15N-NMR spectroscopy. Angew Chem Int Ed. 24:513–515

    Article  Google Scholar 

  11. Wallis JD, Dunitz JD (1983) An all-nitrogen aromatic ring system: structural study of 4-dimethyl-aminophenylpentazole. J Chem Soc Chem Commun:910–911

  12. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5. Angew Chem. 114:3177–3180

    Article  Google Scholar 

  13. Nguyen MT (2003) Polynitrogen compounds 1. Structure and stability of N4 and N5 systems. Coord Chem Rev 244:93–113

    Article  CAS  Google Scholar 

  14. Schroer T, Haiges R, Schneider S, Christe KO (2005) The race for the first generation of the pentazolate anion in solution is far from over. Chem Commun.:1607–1609

  15. Butler RN, Stephens JC, Burke LA (2003) First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: a new N-dearylation of 1-(p-methoxyphenyl) pyrazoles, a 2-(p-methoxyphenyl) tetrazole and application of the methodology to 1-(p-methoxyphenyl) pentazole. Chem Commun:1016–1017

  16. Bazanov B, Geiger U, Carmieli R, Grinstein D, Welner S, Haas Y (2016) Detection of Cyclo-N5 in THF solution. Angew Chem 128:13427–13429

    Article  Google Scholar 

  17. Zhang C, Sun CG, Hu BC, Yu CM, Lu M (2017) Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science 355:374–376

    Article  CAS  Google Scholar 

  18. Zhang C, Yang C, Hu BC, Yu CM, Zheng ZS, Sun CG (2017) A symmetric co(N5)2(H2O)4·4H2O high-nitrogen compound formed by cobalt (II) Cation trapping of a Cyclo-N5 anion. Angew Chem Int Ed. 56:4512–4514

    Article  CAS  Google Scholar 

  19. Yang C, Zhang C, Zheng Z, Jiang C, Luo J, Du Y, Hu B, Sun C, Christe KO (2018) Synthesis and characterization of cyclo-pentazolate salts of NH4+, NH3OH+, N2H5+, C(NH2)3+, and N (CH3)4+. J Am Chem Soc 140:16488–16494

    Article  CAS  Google Scholar 

  20. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials 220:567–570

    Article  CAS  Google Scholar 

  21. Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Optimized pseudopotentials. Phys Rev B 41:1227

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  23. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  24. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  25. Appalakondaiah S, Vaitheeswaran G, Lebègue S (2013) A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane. J Chem Phys 138:184705

    Article  CAS  Google Scholar 

  26. Vaitheeswaran G, Babu KR, Yedukondalu N, Appalakondaiah S (2014) Structural properties of solid energetic materials: a van der Waals density functional study. Curr Sci 106:1219

    CAS  Google Scholar 

  27. Birch F (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J Geophys Res Solid Earth 83:1257–1268

    Article  CAS  Google Scholar 

  28. Setyawan W, Curtarolo S (2010) High-throughput electronic band structure calculations: Challenges and tools. Comput Mater Sci 49:299

    Article  Google Scholar 

  29. Bondarchuk SV, Minaev BF (2017) Two isomeric solid carbon nitrides with 1: 1 stoichiometry which exhibit strong mechanical anisotropy. New J Chem 41:13140

    Article  CAS  Google Scholar 

  30. Segall MD, Shah R, Pickard CJ, Payne MC (1996) Population analysis of plane-wave electronic structure calculations of bulk materials. Phys Rev B 54:16317

    Article  CAS  Google Scholar 

  31. Segall MD, Pickard CJ, Shah R, Payne MC (1996) Population analysis in plane wave electronic structure calculations. Mol. Phys. 89:571–577

    Article  CAS  Google Scholar 

  32. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  33. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  34. Silva AM, Silva BP, Sales FAM, Freire VN (2012) Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior. Phys Rev B 86:195201

    Article  Google Scholar 

  35. Böhlke T, Brüggemann C (2001) Graphical representation of the generalized Hooke’s law. Tech Mech. 21:145–158

    Google Scholar 

  36. Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104

    Article  Google Scholar 

  37. Chung DH, Buessem WR (1968) The Voigt-Reuss-Hill (VRH) approximation and the elastic moduli of polycrystalline ZnO, TiO2 (rutile), and α-Al2O3. J Appl Phys 39:2777–2782

    Article  CAS  Google Scholar 

  38. Liu QJ, Liu ZT (2014) Structural, elastic, and mechanical properties of germanium dioxide from first-principles calculations. Mater Sci Semicond Process 27:765–776

    Article  CAS  Google Scholar 

  39. Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843

    Article  CAS  Google Scholar 

  40. Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101:055504

    Article  Google Scholar 

  41. Feng J, Xiao B, Zhou R, Pan W (2013) Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE= La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Mater. 61:7364–7383

    Article  CAS  Google Scholar 

  42. Chen XQ, Niu HY, Li DZ, Li YY (2011) Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–1281

    Article  CAS  Google Scholar 

  43. Tian Y, Xu B, Zhao Z (2012) Microscopic theory of hardness and design of novel superhard crystals. Int J Refract Met Hard Mater 33:93–106

    Article  CAS  Google Scholar 

  44. Patterson JD, Bailey BC (2007) Solid-state physics: introduction to the theory. Springer Science & Business Media, pp 12–23

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Hai Zhu or Qi-Jun Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Zhu, SH., Gan, YD. et al. The Raman and IR vibration modes of metal pentazolate hydrates [Na(H2O)(N5)]·2H2O and [Mg(H2O)6(N5)2]·4H2O. J Mol Model 26, 84 (2020). https://doi.org/10.1007/s00894-020-4345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4345-4

Keywords

Navigation