Skip to main content
Log in

Electronic structure of hybrid pentaheptite carbon nanoflakes containing boron-nitrogen motifs

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The electronic structure of isomeric graphene nanoflakes (NFs) heavily doped with boron and nitrogen atoms has been explored. Dispersion-corrected B3LYP functional has been used for the geometry optimizations. A complete active space method has been used for the energy evaluations. Combined boron and nitrogen doping promotes polyradicalic antiferromagnetic ground states in the NFs and affects the nanoflake geometry. There is a charge transfer from boron to nitrogen atoms which increases with the doping level. This transfer does not involve carbon atoms. Combined doping reduces both the ionization potentials (IPs) and the electron affinities (EAs) of the NFs similar to nitrogen doping alone. Boron does not affect either IPs or EAs being neither n- nor p-type dopant for the isomeric graphene NFs. All hybrid NFs show a tendency to increase the band gaps with doping level, which is promoted by the increment of the bond length alternation with doping. Finally, the hole reorganization energies for the NFs were found to be lower than the electronic ones, positioning the hybrid NF as hole-transporting systems.

Color coded natural charge differences between charged and neutral states. The excess of positive charge is green for cation radicals and the excess of negative charge is red in anion radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Joensen P, Frindt RF, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21:457–461. https://doi.org/10.1016/0025-5408(86)90011-5

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science (80-) 306:666–669. https://doi.org/10.1126/science.11028963

    Article  CAS  Google Scholar 

  3. Zeng M, Xiao Y, Liu J et al (2018) Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem Rev 118:6236–6296

    Article  CAS  Google Scholar 

  4. Song X, Hu J, Zeng H (2013) Two-dimensional semiconductors: recent progress and future perspectives. J Mater Chem C 1:2952–2969. https://doi.org/10.1039/c3tc00710c

    Article  CAS  Google Scholar 

  5. Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  6. Rao CNR, Ramakrishna Matte HSS, Maitra U (2013) Graphene analogues of inorganic layered materials. Angew Chem Int Ed 52:13162–13185

    Article  CAS  Google Scholar 

  7. Enyashin AN, Ivanovskii AL (2011) Graphene allotropes. Phys Status Solidi Basic Res 248:1879–1883. https://doi.org/10.1002/pssb.201046583

    Article  CAS  Google Scholar 

  8. Li X, Wang Q, Jena P (2017) ψ-Graphene: a new metallic allotrope of planar carbon with potential applications as anode materials for lithium-ion batteries. J Phys Chem Lett 8:3234–3241. https://doi.org/10.1021/acs.jpclett.7b01364

    Article  CAS  PubMed  Google Scholar 

  9. Heimann RB, Evsyukov SE, Koga Y (1997) Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon N Y 35:1654–1658

    Article  CAS  Google Scholar 

  10. Chuvilin A, Meyer JC, Algara-Siller G, Kaiser U (2009) From graphene constrictions to single carbon chains. New J Phys 11:083019. https://doi.org/10.1088/1367-2630/11/8/083019

    Article  CAS  Google Scholar 

  11. de la Garza CGV, García GL, Olmedo EM et al (2018) Electronic structure of isomeric graphene nanoflakes. Comput Theor Chem 1140:125–133. https://doi.org/10.1016/j.comptc.2018.08.007

    Article  CAS  Google Scholar 

  12. Vera de la Garza CG, Olmedo EM, Fomine S (2019) Electronic structure of boron and nitrogen doped isomeric graphene nanoflakes. Comput Theor Chem. https://doi.org/10.1016/j.comptc.2019.01.022

  13. Roondhe B, Jha PK (2018) “Haeckelite”, a new low dimensional cousin of boron nitride for biosensing with ultra-fast recovery time: a first principles investigation. J Mater Chem B 6:6796–6807. https://doi.org/10.1039/c8tb01649f

    Article  CAS  PubMed  Google Scholar 

  14. David L, Bernard S, Gervais C et al (2015) Facile synthesis and high rate capability of silicon carbonitride/boron nitride composite with a sheet-like morphology. J Phys Chem C 119:2783–2791. https://doi.org/10.1021/jp508075x

    Article  CAS  Google Scholar 

  15. Thomas S, Jung H, Kim S et al (2019) Two-dimensional haeckelite h567: a promising high capacity and fast Li diffusion anode material for lithium-ion battery. Carbon N Y 148:344–353. https://doi.org/10.1016/j.carbon.2019.03.085

    Article  CAS  Google Scholar 

  16. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132. https://doi.org/10.1063/1.3382344

  17. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  19. Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  20. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:134105. https://doi.org/10.1063/1.3484283

    Article  CAS  PubMed  Google Scholar 

  21. McCormick TM, Bridges CR, Carrera EI et al (2013) Conjugated polymers: evaluating DFT methods for more accurate orbital energy modeling. Macromolecules 46:3879–3886. https://doi.org/10.1021/ma4005023

    Article  CAS  Google Scholar 

  22. Torres AE, Guadarrama P, Fomine S (2014) Multiconfigurational character of the ground states of polycyclic aromatic hydrocarbons A systematic study. J Mol Model 20:2208. https://doi.org/10.1007/s00894-014-2208-6

    Article  PubMed  Google Scholar 

  23. Harvey JN (2004) DFT computation of relative spin-state energetics of transition metal compounds. pp 151–184

  24. Frisch G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratch, D. J., Marenich, J, Tomasi, J. (2016) Gaussian 16, Rev. A.03. Gaussian, Inc, Wallingford, CT. 111

  25. Malmqvist PÅ, Pierloot K, Shahi ARM et al (2008) The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and cu 2O2 systems. J Chem Phys 128:204109. https://doi.org/10.1063/1.2920188

    Article  CAS  PubMed  Google Scholar 

  26. Yu HS, He X, Li SL, Truhlar DG (2016) MN15: a Kohn-sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem Sci 7:5032–5051. https://doi.org/10.1039/c6sc00705h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng WQ, Goddard WA (2004) Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J Phys Chem B 108:8614–8621. https://doi.org/10.1021/jp0495848

    Article  CAS  Google Scholar 

  28. TURBOMOLE V7.3 2018, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

  29. Brückner C, Engels B (2017) Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet–triplet gaps. Chem Phys 482:319–338. https://doi.org/10.1016/j.chemphys.2016.08.023

    Article  CAS  Google Scholar 

  30. Head-Gordon M (2003) Characterizing unpaired electrons from the one-particle density matrix. Chem Phys Lett 372:508–511. https://doi.org/10.1016/S0009-2614(03)00422-6

    Article  CAS  Google Scholar 

  31. Yang S, Kertesz M (2006) Bond length alternation and energy band gap of polyyne. J Phys Chem A. https://doi.org/10.1021/jp062701+

  32. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I J Chem Phys 24:966–978. https://doi.org/10.1063/1.1742723

    Article  CAS  Google Scholar 

  33. Torres AE, Fomine S (2015) Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight. Phys Chem Chem Phys 17:10608–10614. https://doi.org/10.1039/c5cp00227c

    Article  CAS  PubMed  Google Scholar 

  34. Torres AE, Flores R, Fomina L, Fomine S (2016) Electronic structure of boron-doped finite graphene sheets: unrestricted DFT and complete active space calculations. Mol Simul 42:1512–1518. https://doi.org/10.1080/08927022.2016.1214955

    Article  CAS  Google Scholar 

  35. Olmedo EM, de la Garza CGV, Fomine S (2019) Modeling of silicon- and aluminum-doped phosphorene nanoflakes. J Mol Model 25:292. https://doi.org/10.1007/s00894-019-4182-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge the financial support from PAPIIT (Grant IN201219/30). W.E.V.N. acknowledges support from DGAPA of the UNAM under postdoctoral fellowship Grant No. CJIC/CTIC/1029/2019 and Cesar Gabriel Vera de la Garza acknowledges doctoral fellowship grant 859569 from CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei Fomine.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Garza, C.G.V., Narváez, W.E.V., Rodríguez, L.D.S. et al. Electronic structure of hybrid pentaheptite carbon nanoflakes containing boron-nitrogen motifs. J Mol Model 26, 72 (2020). https://doi.org/10.1007/s00894-020-4324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4324-9

Keywords

Navigation