Skip to main content

Advertisement

Log in

Pressure effects on electronic, elastic, and vibration properties of metallic antiperovskite PbNCa3 by ab initio calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ab initio computations are performed to study the structural, elastic, electronic, and vibrational characteristics of the cubic antiperovskite compound PbNCa3 under pressure up to 50 GPa. By using the generalized gradient approximation (GGA), the equilibrium structural parameters, energy band structure, density of states, elastic properties, and phonon frequencies for PbNCa3 have been examined. We have obtained some concerned feature as Young modulus and Poisson ratio for this compound using the elastic parameters. The computed elastic constant values show that PbNCa3 is stable up to 30 GPa as mechanically. To assess the stability of this compound dynamically, we have investigated the one-phonon DOS and phonon dispersion relations under pressure. Our results indicate that the calculated structural parameter values at 0 GPa are in accord with the existing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Souza ECCD, Muccillo R (2010) Properties and applications of perovskite proton conductors. Mater Res 13:385–394

    Article  Google Scholar 

  2. Haddadi K, Bouhemadou A, Louail L, Medkour Y (2009) Structural, elastic and electronic properties of XNCa3 (X= Ge, Sn and Pb) compounds. Solid State Commun 149(15–16):619–624

    Article  CAS  Google Scholar 

  3. Bilal M, Jalali-Asadabadi S, Ahmad R, Ahmad I (2015) Electronic properties of Antiperovskite materials from state-of-the-art density functional theory. J Chemother 2015:11

    Google Scholar 

  4. Kim WS, Chi EO, Kim JC, Choi HS, Hur NH (2001). Solid State Commun 119:507

    Article  CAS  Google Scholar 

  5. Chi EO, Kim WS, Hur NH (2001). Solid State Commun 120:307

    Article  CAS  Google Scholar 

  6. Bouhemadou A, Khenata R (2007). Comput Mater Sci 39:803

    Article  CAS  Google Scholar 

  7. Okoye CMI (2006). Mater Sci Eng B 130:101

    Article  CAS  Google Scholar 

  8. Ivanovskii AL (1995). Russ Chem Rev 64:499

    Google Scholar 

  9. Ivanovski AL, Sabiryanov RF, Skazkin AN (1998). Phys Solid State 40:1516

    Article  Google Scholar 

  10. Tong P, Wang B-S, Sun Y-P (2013) Mn-based antiperovskite functional materials: review of research. Chin Phys B 22(6):067501

    Article  Google Scholar 

  11. Takenaka K, Takagi H (2005) Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl Phys Lett 87(26):261902–261902-3

    Article  Google Scholar 

  12. Nakamura Y, Takenaka K, Kishimoto A, Takagi H (2009) Mechanical properties of metallic perovskite Mn3Cu0.5Ge0.5N: high-stiffness isotropic negative thermal expansion material. J Am Ceram Soc 92(12):2999–3003

    Article  CAS  Google Scholar 

  13. Chern MY, Vennos DA, DiSalvo FJ (1992). Sol State Chem 96:415

    Article  CAS  Google Scholar 

  14. Moakafi M, Khenata R, Bouhemadou A, Semari F, Reshak AH, Rabah M (2009). Comput Mater Sci 46:1051

    Article  CAS  Google Scholar 

  15. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci U S A 30(9):244–247

    Article  CAS  Google Scholar 

  16. Niewa R, Schnelle W, Wagner F (2001) Synthesis, crystal structure, and physical properties of (Ca3N) Tl. Z Anorg Allg Chem 627(3):365–370

    Article  CAS  Google Scholar 

  17. Jäger J, Stahl D, Schmidt PC, Kniep R (1993) Ca3aun: Ein Calciumauridsubnitrid. Angew Chem 105(5):738–739

    Article  Google Scholar 

  18. Papaconstantopoulos DA, Pickett WE (1992). Phys Rev B 45:4008

    Article  CAS  Google Scholar 

  19. Vansant PR, Van Camp PE, Van Doren VE (1998). Phys Rev B 57:7615

    Article  CAS  Google Scholar 

  20. Haddadi K, Bouhemadou A, Louail L, Maabed S, Maouche D (2009). Phys Lett A 373:1777

    Article  CAS  Google Scholar 

  21. Birch F (1978). J Geophys Res B 83:1257

    Article  CAS  Google Scholar 

  22. Iqbal S, Murtaza G, Khenata R, Mahmood A, Yar A et al (201) Electronic and optical properties ofCa3Mn (M= Ge, Sn, Pb, P, as, Sb and Bi) antiperovskite compounds. J Electron Mater 45(8):4188–4196

  23. İyigör A, Al S (2019). Sakarya Univ J Sci 23(4):700–706

    Google Scholar 

  24. Bilal M, Ahmad I, Jalali Asadabadi S, Ahmad R, Maqbool M (2015). Electron Mater Lett 11(3):466–480

    Article  CAS  Google Scholar 

  25. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002). J Phys Condens Matter 14:2717

    Article  CAS  Google Scholar 

  26. Hohenberg P, Kohn W (1964). Phys Rev B 136:864

    Article  Google Scholar 

  27. Fischer TH, Almlof J (1992). J Phys Chem 96:9768

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  29. Monkhorst HJ, Pack JD (1976). Phys Rev B 13:5188

    Article  Google Scholar 

  30. Bilal M, Ahmad I, Aliabad HAR, Asadabadi SJ (2014). Comput Mater Sci 85:310

    Article  CAS  Google Scholar 

  31. Lurtsko JF (1989). J Appl Hys 8:2991

    Article  Google Scholar 

  32. Born M (1940) Math Proc Cambridge Philos Soc 36(2), 1 60

  33. Hill R (1952). Proc Phys Soc A 65:349–354

    Article  Google Scholar 

  34. Voigt W (1928) A determination of the elastic constants for beta-quartz Lehrbuch de Kristallphysik (Terubner, Leipzig)

  35. Reuss A, Angew Z (1929). Z Angew Math Mech 9:49–58

    Article  CAS  Google Scholar 

  36. Schreiber E, Anderson OL, Soga N (1973) McGraw- Hill, New York

  37. Pugh SF (1954) London Edinburgh Dublin Philos. Mag J Sci 45:823–843

    Article  CAS  Google Scholar 

  38. Fu H, Li D, Peng F, Gao T, Cheng X (2008). Comput Mater Sci 44:774

    Article  CAS  Google Scholar 

  39. Haines J, Leger JM, Bocquillon G (2001). Annu Rev Mater Res 31:1

    Article  CAS  Google Scholar 

  40. Fu H, Li D, Peng F, Gao T, Cheng X (2003). Comput Mater Sci 774:23

    Google Scholar 

  41. Tangadurai V, Weppner W (2006) 81. Ionics 12:1

    Article  Google Scholar 

  42. Kamishima K, Goto T, Nakagawa H et al (2001). Phys Rev B—Condens Matter Mater Phys 63(2):024426

    Article  Google Scholar 

  43. Sun Y, Wang C, Chu L, Wen Y, Nie M, Liu F (2010). Scr Mater 62(9):686

    Article  CAS  Google Scholar 

  44. Asano K, Koyama K, Takenaka K (2008). Appl Phys Lett 92(16):161909

    Article  Google Scholar 

Download references

Funding

This study was supported financially by the Research Center of Amasya University (Project No: FMB-BAP16-0202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin O. Ciftci.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciftci, Y.O., Evecen, M. & Alp, İ.O. Pressure effects on electronic, elastic, and vibration properties of metallic antiperovskite PbNCa3 by ab initio calculations. J Mol Model 27, 7 (2021). https://doi.org/10.1007/s00894-020-04656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04656-2

Keywords

Navigation