Skip to main content
Log in

CHARMM force field generation for a cationic thiophene oligomer with ffTK

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work, CHARMM force field parameters are generated for a cationic oligomer of N, N, N-trimethyl-3-(4-methylthiophen-3-yl) oxy) propan-1-aminium) which has the potential for sensing biological molecules such as nucleic acids, nucleobases. We have used ffTK (force field tool kit) to obtain potential parameters. MD simulations are performed for 20-mer and its complexes with AMP and ATP. The simulation results are analyzed to see the number of phosphates in adenosine nucleotides effects on the structure of the backbone of oligomer. The UV-VIS calculations for the conformers which possess the most probable radius of gyration are carried out and compared to the experimental ones to validate the generated force field.

Recent studies have shown that, biologically important anions (ATP, AMP, vb.) change the spectroscopic properties of cationic polythiophenes (CPT) in the solutions. This work aims to generate CHARMM compatible force field parameters for a CPT to explain experimental studies. The type of interactions will be investigated deeply to lead new biosensor studies by examining the formation and the structure of complexes that consist of a oligothiophene and biological molecules, ATP, AMP by molecular dynamic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4 (2):187–217. https://doi.org/10.1002/jcc.540040211. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540040211

    Article  CAS  Google Scholar 

  2. Carreon AC, Santos WL, Matson JB, So RC (2014) Cationic polythiophenes as responsive dna-binding polymers. Polym. Chem. 5:314–317. https://doi.org/10.1039/C3PY01069D

    Article  CAS  Google Scholar 

  3. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian0~9 Revision A.02. Gaussian Inc. Wallingford CT

  4. Galindo-Murillo R, Robertson JC, Zgarbová M, Šponer J, Otyepka M, Jurecka P, Cheatham TE (2016) Assessing the current state of amber force field modifications for dna. J Chem Theory Comput 12(8):4114–4127. https://doi.org/10.1021/acs.jctc.6b00186. PMID: 27300587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ho HA, Béra-Abérem M, Leclerc M (2005) Optical sensors based on hybrid dna/conjugated polymer complexes. Chemistry 11(6):1718–1724. https://doi.org/10.1002/chem.200400537. https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.200400537

    Article  CAS  PubMed  Google Scholar 

  6. Li C, Numata M, Takeuchi M, Shinkai S (2006) Unexpected chiroptical inversion observed for supramolecular complexes formed between an achiral polythiophene and atp. Chemistry 1(1-2):95–101. https://doi.org/10.1002/asia.200600039. https://onlinelibrary.wiley.com/doi/abs/10.1002/asia.200600039

    CAS  Google Scholar 

  7. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F TK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. https://doi.org/10.1021/jp973084f. PMID: 24889800

    Article  CAS  PubMed  Google Scholar 

  8. Mackerell AD Jr, Feig M, BrooksIII CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415. https://doi.org/10.1002/jcc.20065. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20065

    Article  CAS  Google Scholar 

  9. Mayne CG, Saam J, Schulten K, Tajkhorshid E, Gumbart JC (2013) Rapid parameterization of small molecules using the force field toolkit. J Comput Chem 34(32):2757–2770. https://doi.org/10.1002/jcc.23422. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23422

    Article  CAS  Google Scholar 

  10. Miranda OR, You C-C, Phillips R, Kim I-B, Ghosh PS, Bunz U HF, Rotello VM (2007) Array-based sensing of proteins using conjugated polymers. J Am Chem Soc 129(32):9856–9857. https://doi.org/10.1021/ja0737927. PMID: 17658813

    Article  CAS  PubMed  Google Scholar 

  11. Oostenbrink C, Villa A, Mark AE, VanGunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: The gromos force-field parameter sets 53a5 and 53a6. J Comput Chem 25(13):1656–1676. https://doi.org/10.1002/jcc.20090. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20090

    Article  CAS  Google Scholar 

  12. Pavlova A, Gumbart JC (2015) Parametrization of macrolide antibiotics using the force field toolkit. J Comput Chem 36(27):2052–2063. https://doi.org/10.1002/jcc.24043. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24043

    Article  CAS  Google Scholar 

  13. Pavlova A, Parks JM, Gumbart JC (2018) Development of charmm-compatible force-field parameters for cobalamin and related cofactors from quantum mechanical calculations. J Chem Theory Comput 14(2):784–798. https://doi.org/10.1021/acs.jctc.7b01236. PMID: 29334459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rajwar D, Ammanath G, Cheema JA, Palaniappan A, Yildiz UH, Liedberg B (2016) Tailoring conformation-induced chromism of polythiophene copolymers for nucleic acid assay at resource limited settings. ACS Appl Mater Interfaces 8(13):8349–8357. https://doi.org/10.1021/acsami.5b12171. PMID: 26956217

    Article  CAS  PubMed  Google Scholar 

  15. Rubio-Magnieto J, Thomas A, Richeter S, Mehdi A, Dubois P, Lazzaroni R, Clément S, Surin M (2013) Chirality in dna–π-conjugated polymer supramolecular structures: insights into the self-assembly. Chem Commun 49:5483–5485. https://doi.org/10.1039/C3CC42108B

    Article  CAS  Google Scholar 

  16. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145. https://doi.org/10.1002/jcc.540050204. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540050204

    Article  CAS  Google Scholar 

  17. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107(4):1339–1386. https://doi.org/10.1021/cr0501339. PMID: 17385926

    Article  CAS  PubMed  Google Scholar 

  18. Tocci G, Joly L, Michaelides A (2014) Friction of water on graphene and hexagonal boron nitride from ab initio methods: Very different slippage despite very similar interface structures. Nano Lett 14 (12):6872–6877. https://doi.org/10.1021/nl502837d. PMID: 25394228

    Article  CAS  PubMed  Google Scholar 

  19. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) Charmm general force field: a force field for drug-like molecules compatible with the charmm all-atom additive biological force fields. J Comput Chem 31(4): 671–690. https://doi.org/10.1002/jcc.21367. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21367

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Feng Q, Wang L, Pei M, Zhao J, Zhang G (2014) A novel polythiophene derivative as a sensitive colorimetric and fluorescent sensor for the detection of atp. Des Monomers and Polym 17(1):26–32. https://doi.org/10.1080/15685551.2013.771315

    Article  CAS  Google Scholar 

  21. Yao Z, Li C, Shi G (2008) Optically active supramolecular complexes of water-soluble achiral polythiophenes and folic acid: spectroscopic studies and sensing applications. Langmuir 24(22):12829–12835. https://doi.org/10.1021/la802086d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources). We would like to give thanks to Ümit Hakan Yıldız for inspirations to this study.

Funding

This work was supported by the “Scientific and Technological Research Council of Turkey,” TUBITAK, under the project numbers 119Z100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuran Elmacı Irmak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kıbrıs, E., Barbak, N.N. & Irmak, N.E. CHARMM force field generation for a cationic thiophene oligomer with ffTK. J Mol Model 27, 34 (2021). https://doi.org/10.1007/s00894-020-04610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04610-2

Keywords

Navigation