Skip to main content
Log in

Nonlinear optical properties and spectroscopic characterization of Y-shaped polymer using quantum chemical approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present study reports nonlinear optical properties such as the first and second hyper polarizabilities (β and γ) of Y-shaped polymer (P1) and substituted polymers. The basic Y-shaped polymer (R = R1 = H) was named as P1. Upon substitution of one OCH3 group in ortho position of oxygen, it becomes polymer P2 (R1 = H, R = OCH3) and other OCH3 group on another ortho becomes P3 (R1 = R = OCH3). We have also reported structural parameters, vibrational and electronic absorption spectra of polymer, and its substituted polymers. The geometrical parameters such as dipole moment, bond length, and angles are reported at B3LYP/6-311++g** level of theory. In addition, the vibrational, electronic absorption spectra and nonlinear optical (NLO) properties are also reported at the same level of theory. There is a significant change in dipole moment and in energy observed whereas symmetry, bond length, and angles are resembling Y-shaped and substituted polymer. The vibrational spectra of Y-shaped polymer (P1) having the intense peak are C-H stretching mode observed at 1258 cm−1. These theoretical vibrational modes are well matching with available experimental determinations. The method dependent hyperpolarizabilities calculated by applying the field along the X, Y, and Z direction. This study confirms the polymer P1 and P2 showing first and second hyperpolarizability response whereas P3 do not show. The electronic absorption spectra for polymer and substituted polymers are also reported at the same level of theory using (TDDFT) approach. The wavelength of electronic transition, oscillator strength, and HOMO-LUMO gap was also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boyd RW (1992) Nonlinear optics. Academic Press, New York

    Google Scholar 

  2. Bloembergen N (1965) Nonlinear optics. W. A. Benjamin, New York

    Google Scholar 

  3. Williams DJ (1984). Angew Chem Int Ed Eng 23:690–703

    Google Scholar 

  4. Butcher PN, Cotter D (1990) The elements of nonlinear optics. Cambridge University Press, Cambridge

    Google Scholar 

  5. Singer KD, Garito AF (1981). J Chem Phys 75:3572–3580

    CAS  Google Scholar 

  6. Oudar JL, Le H (1975) Persoons. Opt Commun 15:258–262

    CAS  Google Scholar 

  7. Levin BF, Betha CG (1974). Appl Phys Lett 24:445–447

    Google Scholar 

  8. Calabrese JC, Cheng LT, Green JC, Marder SR, Tam W (1991). J Ame Chem Soc 113:7227–7232

    CAS  Google Scholar 

  9. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers, vol 1. Wiley, New York

    Google Scholar 

  10. Eaton DF, Meredith GR, Miller JS (1992). Adv Mater 4:45–48

    CAS  Google Scholar 

  11. Williams DJ (1992) Nonlinear optical properties of organic molecules V; Ed. Proc. SPIE-Int. Soc. Opt. Eng. Vol. 1775

  12. Eaton DF (1991). Science 253:281–287

    CAS  PubMed  Google Scholar 

  13. Marder SR, Beatan DN, Cheng L-T (1991). Science 252:103–106

    CAS  PubMed  Google Scholar 

  14. Marder SR, Sohn JE, Stucky GD (1991) Materials for nonlinear optics: chemical perspectives, Eds. ACS Symposium Series 455, ACS, Washington, DC

  15. Bredas JL, Silbey RJ (1991) Eds. Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials. Kluwer, Dordrecht

    Google Scholar 

  16. Khanarian G (1990) Nonlinear optical properties of organic molecules III, Ed.; Proc. SPIE – Int. Soc. Opt. Eng

  17. Messier J, Kajar F, Prasad P, Ulrich DR (eds) (1989) Nonlinear optical effects in organic polymers. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  18. Hann RA, Bloor D (Eds.) (1988) Organic materials for nonlinear optics, Royal Society of Chemistry monographs 69, Burlington House, London

  19. Heeger AJ, Orenstein J, Ulrich DR Eds. (1988) Nonlinear optical properties of polymers; Mater. Res. Soc. Symp. Proc. Vol. 109

  20. Chemla DS, Zyss J Eds. (1987) Nonlinear optical properties of organic molecules and crystals; Academic Press, New York, Vol. 1 and 2

  21. Carters G, Zyss J Eds. (1987) Nonlinear optical processes in organic materials; J. Opt. Soc. Am. B Vol 4

  22. Nonlinear optical properties of molecules and polymeric materials Williams DJ Ed.: ACS Symposium Series 233, ACS, Washington, DC, 1984

  23. Flytzanis C (1975) In: Rabin H, Tang CL (eds) Treatise of quantum electronics. Academic Press, New York

    Google Scholar 

  24. Long NJ (1995). Angew Chem Int Ed Eng 34:21–38

    CAS  Google Scholar 

  25. Lipscomb GF, Garrito AF, Narang RS, Chem J (1981). Phys. 75:1509–1516

    CAS  Google Scholar 

  26. Baumert JC, Twieg RJ, Bjorklund GC, Logan JA, Dirk CW (1987). Appl Phys Lett 51:1484–1486

    CAS  Google Scholar 

  27. Dehu C, Meyers F (1993). J L Bredas J Amer Chem Soc 115:6198–6206

    CAS  Google Scholar 

  28. Nonlinear optical and electro active polymer. Plenum, New York, 1988

  29. Prasad PN, Ulrich DR Eds. (1988) Nonlinear optical properties of organic molecules, Khanarian G.; Ed.; SPIE, Bellingham, WA, USA

  30. Williams DJ (1992). Thin Solid Films 216:117–122

    CAS  Google Scholar 

  31. Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992). Nature 357:477–479

    CAS  Google Scholar 

  32. Lindsay GA, Singer KD (eds) (1995) Polymers for second-order nonlinear optics, ACS symposium series 601. ACS, Washington, DC

    Google Scholar 

  33. Miyata S, Sasabe H Eds. (1997) Poled polymers and their applications to SHG and EO devices, Advances of Nonlinear Optics, Gordon and Breach, Amsterdam

  34. Burland DM, Miller RD, Walsh CA (1994). Chem Rev 94:31–75

    CAS  Google Scholar 

  35. Zyss J (ed) (1994) Molecular nonlinear optics materials physics and devices. Academic Press, Orlando

    Google Scholar 

  36. Mortazavi MA, Knoesen A, Kowel ST, Higgins BG, Dienes A (1989). J Opt Soc Am B 6:733–741

    CAS  Google Scholar 

  37. Charra F, Kajzar F, Nunzi JM, Raimond P (1993). E Idiart Opt Lett 18:941–943

    CAS  Google Scholar 

  38. McWeeny R (1989) Methods of molecular quantum mechanics2nd edn. Academic Press, San Diego

    Google Scholar 

  39. Daul CA, Ciofini I, Weber V (2003). Int J Quantum Chem 91:297–302

  40. Yokoyama T, Yokoyama S, Kamikado T, Okuno Y, Mashiko S (2001). Nature 413:619–621

    CAS  PubMed  Google Scholar 

  41. Okuno Y, Yokoyama T, Yokoyama S, Kamikado T, Mashito S (2002). J Am Chem Soc 124:7218–7225

    CAS  PubMed  Google Scholar 

  42. Yeung M, Ng ACH, Drew MGB, Vorpagel E, Breitung EM, McMahon RJ, Ng DKPJ (1998). Org Chem 63:7143–7150

    CAS  Google Scholar 

  43. Karki L, Vance FW, Hupp JT, LeCours SM, Therien MJ (1998). J Am Chem Soc 120:2606–2611

    CAS  Google Scholar 

  44. Sen A, Ray PC, Das PK, Krishnan V (1996). J Phys Chem 100:19611–19613

    CAS  Google Scholar 

  45. Suslick KS, Chen C-T, Meredith GR, Cheng L-T (1992). J Am Chem Soc 114:6928–6930

    CAS  Google Scholar 

  46. Di Bella S, Fragalà I, Ledoux I, Marks TJ (1995). J Am Chem Soc 117:9481–9485

    Google Scholar 

  47. Di Bella S, Fragalà I, Ledoux I, Marks TJ, Ratner MA (1996). J Am Chem Soc 118:12747–12751

    Google Scholar 

  48. Barlow S, Marder SR (2000). Chem Commun:1555–1562

  49. Malaun M, Reeves ZR, Paul RL, Jeffery JC, Mc Cieverty JA, Ward MD, Asselberghs I, Clays K, Persoons A (2001). Chem Commun:49–50

  50. Le Cours SM, Guan H-W, Di Magno SG, Wang CH, Therien MJ, Am J (1996). Chem Soc 118:1497–1503

    Google Scholar 

  51. Vance FW, Hupp JT (1999). J Am Chem Soc 121:4047–4053

    CAS  Google Scholar 

  52. McDonagh AM, Humphery MG, Samoc M, Luther-Dravies B, Houbrechts S, Hiroyuki TW, Persoons SA, Am J (1999). Chem Soc 121:1405–1406

    CAS  Google Scholar 

  53. Hurst SK, Lucas NT, Humphrey MG, Asselberghs I, Boxel RV, Persoons A (2001). Aust J Chem 54:447–451

    CAS  Google Scholar 

  54. Balavoine GGA, Daran JC, Iftime G, Lacroix PG, Manoury E, Delaire JA, Fanton IM, Nakatani K, Di Bella S (1999). Organometallics 18:21–29

    CAS  Google Scholar 

  55. Liu Y, Liu Y, Zhang D, Hu H, Liu C (2001). J Mol Struct 570:43–51

    CAS  Google Scholar 

  56. Zhang H, Yang Y, Xiao, Liu F, Huo F, Chen L, Chen Z, Bo S, Qiu L, Zhen Z (2013). J Mater Chem C 00:1–3

    Google Scholar 

  57. Kolli B, Mishra SP, Palai AK, Kanai T, Joshi MP, Raj Mohan S, Dhami TS, Kukreja LM, Samui AB, Poly J (2012). Sci A: Poly Chemist 51:836–843

    Google Scholar 

  58. Cho MJ, Kim JY, Kim JH, Lee SH, Dalton LR, Choi DH (2005). Bull Kor Chem Soc 26:77–84

    CAS  Google Scholar 

  59. Lee C, Park S-K, Yang M, Lee N-S, Kim NJ (2007). Bull Kor Chem Soc 28:447–450

    CAS  Google Scholar 

  60. NIST Computational Chemistry Comparison and Benchmark Database (2010) NIST Standard Reference Database Number 101, http://cccbdb.nist.gov. Accessed 12 July 2020

  61. Shen W, Li M, Li Y, Wang S (2007). Inorg Chim Acta 360:619–624

    CAS  Google Scholar 

  62. Miao R, Yang G, Zaho C, Hong J, Zhu L (2005). J Mol Struct (Thoechem) 728:197–202

    CAS  Google Scholar 

  63. Boyd RJ, Choi SC, Hale CC (1984). Chem Phys Lett 112:136–141

    CAS  Google Scholar 

  64. Yang SW, Zhang H, Soon JM, Lim CW, Wu P, Loh KP (2003). Diam Relat Mater 12:1194–1200

    CAS  Google Scholar 

  65. Parker JK, Davis SR (1997). J Phys Chem A 101:9410–9414

    CAS  Google Scholar 

  66. Gaussian 16, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, and Fox DJ (2016) Gaussian, Inc., Wallingford

  67. Kanis DR, Ratner MA, Marks TJ (1994). Chem Rev 94:195–242

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to C-DAC Pune for computing facility.

Funding

The project was funded by ISRO, Bangalore, India, under the RESPOND Program (Grant No. ISRO/RES/2/425/19-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahadevappa Naganathappa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naganathappa, M., Ravula, S., Kolli, B. et al. Nonlinear optical properties and spectroscopic characterization of Y-shaped polymer using quantum chemical approach. J Mol Model 26, 299 (2020). https://doi.org/10.1007/s00894-020-04517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04517-y

Keywords

Navigation