Skip to main content
Log in

B3LYP, M06 and B3PW91 DFT assignment of nd8 metal-bis-(N-heterocyclic carbene) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This paper is focused on the examination of the bonding properties of a series of [M(NHC)2X2] (M = nd8 transition metal; X = Cl, Br and I) complexes in normal, abnormal and mixed CC coordination modes. Structures have been optimised in gas phase using B3LYP, M06 and P3BW91 functionals. Two basis sets have been used: the LanL2DZ and a mixed basis set (LanL2DZ for nd8 transition metals as well as halogen atoms and 6-311+G(d,p) for other atoms). Results obtained indicate that the B3PW91 bond distances are closer to experimental data. The complexation energies obtained for each binding mode increase in the order: Ni2+ < Pd2+ < Pt2+, independently of the halogen atom adopted. From the Quantum Theory of Atoms in Molecule (QTAIM) approach, the instability has been found to follow this trend: M − X < M − C. The analysis of metal-ligand interactions using the natural bond orbital (NBO) revealed that the strongest metal-ligand interactions are observed in the normal binding mode. The NCH → MX2 donation terms were found to be interestingly predominant compared with back donation ones in the complexes studied, except in Pt chloride ones. The contribution of electrostatic interaction energy between the above fragments (∆Eelstat term) is in the range 57.48–63.95% traducing the fact that the interactions are mostly electrostatic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arduengo AJ, Harlow RL, Kline M (1991). J Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  2. Crudden CM, Allen DP (2004). Coord Chem Rev 248:2247–2273

    Article  CAS  Google Scholar 

  3. Peris E, Crabtree RH (2004). Coord Chem Rev 248:2239–2246

    Article  CAS  Google Scholar 

  4. Pugh D, Danopoulos AA (2007). Coord Chem Rev 251:610–641

    Article  CAS  Google Scholar 

  5. Díez-González S, Marion N, Nolan SP (2009). Chem Rev 109:3612–3676

    Article  PubMed  CAS  Google Scholar 

  6. Visbal R, Gimeno MC (2014). Chem Soc Rev 43:3551–3574

    Article  PubMed  CAS  Google Scholar 

  7. Hopkinson MN, Richter C, Schedler M, Glorius F (2014). Nature 510:485–496

    Article  PubMed  CAS  Google Scholar 

  8. Herrmann WA (2002). Angew Chem Int Ed 41:1290–1309

    Article  CAS  Google Scholar 

  9. Munz D, Meyer D, Strassner T (2013). Organometallics 32:3469–3480

    Article  CAS  Google Scholar 

  10. Ingrosso G, Midollini N (2003). J Mol Catal A-Chem 204-205:425–431

    Article  CAS  Google Scholar 

  11. Munz D, Strassner T (2014). Top Catal 57:1372–1376

    Article  CAS  Google Scholar 

  12. Muehlhofer M, Strassner T, Herrmann WA (2002). Angew Chem Int Ed 41:1745–1747

    Article  CAS  Google Scholar 

  13. Liu JQ, Gou XX, Han YF (2018). Chem Asian J 13:2257–2276

  14. Hindi KM, Panzner MJ, Tessier CA, Cannon CL, Youngs WJ (2009). Chem Rev 109:3859–3884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gautier A, Cisnetti F (2012). Metallomics 4:23–32

    Article  PubMed  CAS  Google Scholar 

  16. Cisnetti F, Gautier A (2013). Angew Chem Int Ed Eng 52:11976–11978

    Article  CAS  Google Scholar 

  17. Liu W, Gust R (2013). Chem Soc Rev 42:755–773

    Article  PubMed  CAS  Google Scholar 

  18. Nolan SP (2011). Acc Chem Res 44:91–100

    Article  PubMed  CAS  Google Scholar 

  19. Johnson NA, Southerland MR, Youngs WJ (2017). Molecules 22(8):1263–1283

    Article  PubMed Central  CAS  Google Scholar 

  20. Chardon E, Puleo GL, Dahm G, Fournel S, Guichard G, Bellemin-Laponnaz S (2012). ChemPlusChem 77:1028–1038

    Article  CAS  Google Scholar 

  21. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012). Oncogene 31:1869–1883

    Article  PubMed  CAS  Google Scholar 

  22. Ahrens S, Zeller A, Taige M, Strassner T (2006). Organometallics 25:5409–5415

    Article  CAS  Google Scholar 

  23. Poverenov E, Efremenko I, Leitus G, Martin JM, Milstein D (2013). Organometallics 32:4813–4819

    Article  CAS  Google Scholar 

  24. Hou X-F, Wang Y-N, Gottker-Schnetmann I (2011) N-Heterocyclic carbene palladium catalyzed regioselective oxidative trifluoroacetoxylation of unactivated methylene sp3 C–H bonds in linear alkyl esters. Organometallics 30:6053–6056. https://doi.org/10.1021/om200484g

  25. Micksch M, Strassner T (2012) Palladium(II) complexes with chelating biscarbene ligands in the catalytic Suzuki–Miyaura cross coupling reaction. Eur J Inorg Chem 2012:5872–5880. https://doi.org/10.1002/ejic.201200940

  26. Nonnenmacher M, Kunz D, Rominger F, Oeser T (2007). J Organomet Chem 692:2554–2563

    Article  CAS  Google Scholar 

  27. McCall AS, Wang H, Desper JM, Kraft S (2011). J Am Chem Soc 133:1832–1848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jacobsen H, Correa A, Poater A, Cavallo L (2009). Coord Chem Rev 253:687–703

    Article  CAS  Google Scholar 

  29. Jagadeesan R, Velmurugan G, Venuvanalingam P (2015). RSC Adv 5:80661–80667

    Article  CAS  Google Scholar 

  30. Munz D, Strassner T (2014). Angew Chem Int Ed 53:2485–2488

    Article  CAS  Google Scholar 

  31. Meyer D, Taige MA, Zeller A, Hohlfeld K, Ahrens S, Strassner T (2009). Organometallics 28:2142–2149

    Article  CAS  Google Scholar 

  32. Taige MA, Zeller A, Ahrens S, Goutal S, Herdtweck E, Strassner T (2007). J Organomet Chem 692:1519–1529

    Article  CAS  Google Scholar 

  33. Strassner T, Muehlhofer M, Zeller A, Herdtweck E, Herrmann WA (2004). J Organomet Chem 689:1418–1424

    Article  CAS  Google Scholar 

  34. Weinhold F, Klein RA (2012). Mol Phys 110:565–579

    Article  CAS  Google Scholar 

  35. Schreckenbach G, Ziegler TJ, Li J (1995). Int J Quantum Chem 56:477–488

    Article  CAS  Google Scholar 

  36. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JRMontgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi JJ, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth A, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09 Revision B.04. Gaussian Inc, Pittsburgh: PA (licence g09)

    Google Scholar 

  38. Ivanciuc O, Balaban AT (1998) Graph theory in chemistry. In: PVR S, Allinger NL, Kollmann PA, Clark T, HFS S, Gasteiger J, Schreiner PR (eds) The encyclopedia of computational chemistry. John Wiley & Sons, Chichester 1169–1190

  39. Lu T, Chen F (2012). J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  40. Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  41. Xiao M, Lu T (2015). J Adv Phys Chem 4:111–124

    Article  CAS  Google Scholar 

  42. Parr RG, Szentpaly LV, Liu S (1999). J Am Chem Soc 12:1922–1924

    Article  Google Scholar 

  43. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  44. Pearson RG (1997) Chemical hardness. Wiley-VCH, Oxford

    Book  Google Scholar 

  45. Morokuma K (1971). J Chem Phys 55:1236–1244

    Article  CAS  Google Scholar 

  46. Kitaura K, Morokuma KA (1976). Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  47. Ziegler T, Rauk A (1977). Theoret Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  48. Ruedenberg K (1962). Rev Mod Phys 34:326–376

    Article  CAS  Google Scholar 

  49. Heitler W, London F (1927). Z Phys 44:455–472

    Article  CAS  Google Scholar 

  50. Clark T, Murray JS, Politzer P (2018). Phys Chem Chem Phys 20:30076–30082

    Article  PubMed  CAS  Google Scholar 

  51. Morokuma K, Kitaura K (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York, pp 215–242

    Chapter  Google Scholar 

  52. Politzer P, Murray JS, Clark T (2015). J Mol Model 21:1–10

    Article  CAS  Google Scholar 

  53. Heckenroth M, Kluser E, Neels A, Albrecht M (2008). Dalton Trans 44:6242–6249

    Article  CAS  Google Scholar 

  54. Shimojo F, Wu Z, Nakano A, Kalia RK, Vashishta P (2010). J Chem Phys 132:1–7

    Article  CAS  Google Scholar 

  55. Perdew JP, Yue W (1989). Phys Rev B 40:3399–3399

    Article  CAS  Google Scholar 

  56. Wysokinski R, Michalska D (2001). J Comput Chem 22:901–912

    Article  CAS  Google Scholar 

  57. Herrmann WA, Reisinger C-P, Spiegler M (1998). J Organomet Chem 557:93–96

    Article  CAS  Google Scholar 

  58. Lebel H, Janes MK, Charette AB, Nolan SP (2004). J Am Chem Soc 126:5046–5047

    Article  PubMed  CAS  Google Scholar 

  59. Chianese AR, Crabtree RH (2004). ACS Symp Ser 885:169–183

    Article  CAS  Google Scholar 

  60. Chianese AR, Kovacevic A, Zeglis BM, Faller JW, Crabtree RH (2004). Organometallics 23:2461–2468

    Article  CAS  Google Scholar 

  61. Bayat M, Yaghoobi F, Salehzadeh S, Hokmi S (2011). Polyhedron 30:2809–2814

    Article  CAS  Google Scholar 

  62. Samantaray MK, Roy D, Patra A, Saikh M, Sunoj RB, Ghosh P (2006). J Organomet Chem 691:3797–3805

    Article  CAS  Google Scholar 

  63. De Bruin TJ, Milet A, Greene AE, Gimbert Y (2004). J Organomet Chem 69:1075–1080

    Article  CAS  Google Scholar 

  64. Vyboishchikov SF, Frenking G (1998). Chem Eur J 4:1428–1438

    Article  CAS  Google Scholar 

  65. Boehme C, Frenking G (1998). Organometallics. 17:5801–5809

    Article  CAS  Google Scholar 

  66. Elschenbroich C, Salzer A (1992) Organometallics, a concise introduction2nd edn. VCH Press, Weinheim, Germany

    Google Scholar 

  67. Bickelhaupt FM, Baerends EJ (2000). Rev Comput Chem 15:1–86

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Désiré Bikele Mama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moto Ongagna, J., Tamafo Fouegue, A.D., Ateba Amana, B. et al. B3LYP, M06 and B3PW91 DFT assignment of nd8 metal-bis-(N-heterocyclic carbene) complexes. J Mol Model 26, 246 (2020). https://doi.org/10.1007/s00894-020-04500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04500-7

Keywords

Navigation