Skip to main content

Advertisement

Log in

Chemisorption-repulsion energies of H2 on surface (110) of Mg1−xMx alloys (M = Al, Ni, Zn; 0.0 ≤ x ≤ 0.20) as a function of temperature

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In recent years, the popularity of metal hydrides has increased considerably for hydrogen storage and their applications in hydrogen fuel cells. Their potential applications for clean energy are promissory. However, the temperatures required for adsorption and desorption are extremely high, which range between 500 and 700 K, making their use impractical. To overcome these difficulties, the following work considers using three hydride alloys: magnesium-aluminum (MgAl), magnesium-nickel (MgNi), and magnesium-zinc (MgZn). The Mg concentrations were set to be between 80 and 100 wt% in order to reduce the temperatures of adsorption and desorption in contrast with the temperatures of pure magnesium. The chemisorption and repulsion energies of the hydrogen molecule on the surface (110) of the different metallic alloys were studied at 0, 200, 400, 600, and 700 K, respectively. The study was based on the density functional theory (DFT), with the module DMol3 of the molecular simulation program Materials Studio, which was used to obtain these energy values. The results confirm that adding aluminum, nickel, or zinc into magnesium matrix increases the chemisorption and decreases the energy repulsion values on surfaces of the metallic alloys, improving the effectiveness of the hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zaluska A, Zaluski L, Strom-Olsen JO (1999) Nanocrystalline magnesium for hydrogen storage. J Alloys Compd 288:217–225

    Article  CAS  Google Scholar 

  2. Norskov JK, Houmoller A, Johansson PK, Lundqvist BI (1981) Adsorption and dissociation of H2 on Mg surfaces. Phys Rev Lett 46(4):257–260

    Article  Google Scholar 

  3. Liang J (2005) Theoretical insight on tailoring energetics of Mg hydrogen absorption/desorption through nano-engineering. Appl Phys A Mater Sci Process 80(1):173–178

    Article  CAS  Google Scholar 

  4. Ramírez-Dámaso G, Ramírez-Platón IE, López-Chávez E, Castillo-Alvarado FL, Cruz-Torres A, Caballero F, Mondragón-Guzmán R, Rojas-Hernández E (2016) A DFT study of hydrogen storage on surface (110) of Mg1-xAlx (0 ≤ x ≤ 0.1). Int J Hydrog Energy 41:23388–23393

    Article  Google Scholar 

  5. Andreasen A (2008) Hydrogenation of Mg-Al alloys. Int J Hydrog Energy 33:7489–7497

    Article  CAS  Google Scholar 

  6. Bouaricha S, Dodelet JP, Guay D, Huot J, Boily S, Schulz R (2000) Simple metal and intermetallic hydrides. J Alloys Compd 297:282–293

    Article  CAS  Google Scholar 

  7. Milanese C, Girella A, Bruni G, Berbenni V, Cofrancesco P, Marini A, Villa M, Matteazzi P (2008) Hydrogen storage in magnesium–metal mixtures: reversibility, kinetic aspects and phase analysis. J Alloys Compd 465:396–405

    Article  CAS  Google Scholar 

  8. Schlapbach L, Seiler A, Stucki F, Siegmann HC (1980) Surface effects and the formation of metal hydrides. J Less-Common Metals 73:145–160

    Article  CAS  Google Scholar 

  9. Zaluski L, Zaluska A, Strom-Olsen JO (1997) Nanocrystalline metal hydrides. J Alloys Compd 253–254:70–79

    Article  Google Scholar 

  10. Ramírez-Platón IE (2016) Almacenamiento de Hidrógeno en Aleaciones Mg1−xMx (M=Al, Ni, Zn) para 0 ≤ x ≤ 0.2, Master Degree Thesis, SEPI-ESIA TICOMAN, Instituto Politécnico Nacional, México, in Spanish

  11. Ramírez-Rodríguez O (2019) Dependencia De La Temperatura Para El Almacenamiento De Hidrogeno En Hidruros Metalicos Mg1−xMx (M=Al, Ni, Zn, x= 0.00, 0.02,…, 0.20), Master Degree Thesis, SEPI-ESIA TICOMAN, Instituto Politécnico Nacional, México, in Spanish

  12. Ramírez-Rodríguez O et al (2018) Proceedings of the international congress of the Mexican hydrogen society XIV. Ciudad de México, México, pp 168–175

    Google Scholar 

  13. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871

    Article  Google Scholar 

  14. Web page: www.accelrys.com

  15. Kohn W, Sham J (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A 1133–A 1138

    Article  Google Scholar 

Download references

Acknowledgments

F. L. Castillo-Alvarado acknowledges the partial support provided by COFAA-Instituto Politécnico Nacional, EDD-Instituto Politécnico Nacional, MEXICO.

G. Ramírez-Dámaso acknowledges the partial support provided through the projects SIP-20170593 and SIP-20181898, by Instituto Politécnico Nacional, MEXICO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ramírez-Dámaso.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Dámaso, G., Ramírez-Rodríguez, O., Caballero, F. et al. Chemisorption-repulsion energies of H2 on surface (110) of Mg1−xMx alloys (M = Al, Ni, Zn; 0.0 ≤ x ≤ 0.20) as a function of temperature. J Mol Model 25, 326 (2019). https://doi.org/10.1007/s00894-019-4214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4214-1

Keywords

Navigation