Skip to main content
Log in

Proton disorder and elasticity of hexagonal ice and gas hydrates

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work is devoted to the study of the mechanical properties of hexagonal ice Ih and gas hydrate frameworks sI, sII and sH, taking into account the disorder in the positions of the hydrogen atoms (protons). The article emphasizes the critical role of the elastic energy for the evaluation of the relative energy of the proton configurations. The calculations are performed with the help of the TINKER package using the AMOEBA polarizable force field. The elastic constants, elastic modulus, and anisotropy indices are calculated. It is shown that all gas hydrate frameworks are very isotropic due to their cage-like structure. It was established that one of the reasons for the higher anisotropy of ice Ih is the presence of a large number of highly symmetric proton configurations. The purpose of the article is to overcome the apparent contradiction between the ab initio and force field methods in predicting the relative stability of the proton configurations of ice structures at low temperature. The other purpose is to evaluate the effect of proton disorder on the elastic properties of ice and gas hydrate structures.

Proton configurations in hexagonal ice: fixed (a) and free (b) unit cell parametersᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, Oxford

    Google Scholar 

  2. Ning F, Yu Y, Kjelstrup S, Vlugt TJH, Glavatskiy K (2012) Mechanical properties of clathrate hydrates: status and perspectives. Energy Environ Sci 5:6779–6795

    Article  CAS  Google Scholar 

  3. Bernal JD, Fowler RH (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys 1:515–548

    Article  CAS  Google Scholar 

  4. Pauling L (1935) The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J Am Chem Soc 57:2680–2684

    Article  CAS  Google Scholar 

  5. Kuo JL, Klein ML, Kuhs WF (2005) The effect of proton disorder on the structure of ice-Ih: a theoretical study. J Chem Phys 123:134505

    Article  PubMed  Google Scholar 

  6. Barkema GT, Boer JD (1993) Properties of a statistical model of ice at low temperatures. J Chem Phys 99:2059–2067

    Article  CAS  Google Scholar 

  7. Pisani C, Casassa S, Ugliengo P (1996) Proton-ordered ice structures at zero pressure. A quantum-mechanical investigation. Chem Phys Lett 253:201–208

    Article  CAS  Google Scholar 

  8. Salzmann CG, Radaelli PG, Slater B, Finney JL (2011) The polymorphism of ice: five unresolved questions. Phys Chem Chem Phys 13:18468–18480

    Article  CAS  PubMed  Google Scholar 

  9. Parkkinen P, Riikonen S, Halonen L (2014) Ice XI: not that ferroelectric. J Phys Chem C 118:26264–26275

    Article  CAS  Google Scholar 

  10. Shephard JJ, Slater B, Harvey P, Hart M, Bull CL, Bramwell ST, Salzmann CG (2018) Doping-induced disappearance of ice II from water’s phase diagram. Nat Phys 14:569–572

    Article  CAS  Google Scholar 

  11. Hirsch TK, Ojamäe L (2004) Quantum-chemical and force-field investigations of ice Ih: computation of proton-ordered structures and prediction of their lattice energies. J Phys Chem B 108:15856–15864

    Article  CAS  Google Scholar 

  12. Casassa S, Calatayud M, Doll K, Minot C, Pisani C (2005) Proton ordered cubic and hexagonal periodic models of ordinary ice. Chem Phys Lett 409:110–117

    Article  CAS  Google Scholar 

  13. Knight C, Singer SJ, Kuo JL, Hirsch TK, Ojamäe L, Klein ML (2006) Hydrogen bond topology and the ice VII/VIII and Ih/XI proton ordering phase transitions. Phys Rev E 73:056113

    Article  Google Scholar 

  14. Tribello GA, Slater B (2006) Proton ordering energetics in ice phases. Chem Phys Lett 425:246–250

    Article  CAS  Google Scholar 

  15. Lenz A, Ojamäe L (2011) Structures of the I-, II- and H-methane clathrates and the ice-methane clathrate phase transition from quantum-chemical modeling with force-field thermal corrections. J Phys Chem A 115:6169–6176

    Article  CAS  PubMed  Google Scholar 

  16. Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107:5933–5947

    Article  CAS  Google Scholar 

  17. Laury ML, Wang LP, Pande VS, Head-Gordon T, Ponder JW (2015) Revised parameters for the AMOEBA polarizable atomic multipole water model. J Phys Chem B 119:9423–9437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fanourgakis GS, Xantheas SS (2008) Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. J Chem Phys 128:074506

    Article  PubMed  Google Scholar 

  19. Kirov MV, Fanourgakis GS, Xantheas SS (2008) Identifying the most stable networks in polyhedral water clusters. Chem Phys Lett 461:180–188

    Article  CAS  Google Scholar 

  20. Lekner J (1998) Energetics of hydrogen ordering in ice. Physica B 252:149–159

    Article  CAS  Google Scholar 

  21. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 369:253–287

    Article  Google Scholar 

  22. Lekner J (1991) Summation of coulomb fields in computer-simulated disordered systems. Physica A 176:485–498

    Article  Google Scholar 

  23. Shpakov VP, Tse JS, Tulk CA, Kvamme B, Belosludov VR (1998) Elastic moduli calculation and instability in structure I methane clathrate hydrate. Chem Phys Lett 282:107–114

    Article  CAS  Google Scholar 

  24. Miranda CR, Matsuoka T (2008) First-principles study on mechanical properties of CH4 hydrate. Proceedings of the 6th international conference on gas hydrates (ICGH 2008), 6–10 July 2008, Vancouver, BC, Canada

  25. Huo H, Liu Y, Zheng Z, Zhao J, Jin C, Lv T (2011) Mechanical and thermal properties of methane clathrate hydrates as an alternative energy resource. J Renew Sustain Energy 3:063110

    Article  Google Scholar 

  26. Wang S (2013) First-principles studies on the impact of proton disorder on physical properties of ice. Int J Quantum Chem 113:661–666

    Article  CAS  Google Scholar 

  27. Jendi ZM, Rey AD, Servio P (2015) Ab initio DFT study of structural and mechanical properties of methane and carbon dioxide hydrates. Mol Simulat 41:572–579

    Article  CAS  Google Scholar 

  28. Jendi ZM, Servio P, Rey AD (2015) Ideal strength of methane hydrate and ice Ih from first-principles. Cryst Growth Des 15:5301–5309

    Article  CAS  Google Scholar 

  29. Jendi ZM, Servio P, Rey AD (2016) Ab initio modelling of methane hydrate thermophysical properties. Phys Chem Chem Phys 18:10320–10328

    Article  CAS  PubMed  Google Scholar 

  30. Jia J, Liang Y, Tsuji T, Murata S, Matsuoka T (2017) Elasticity and stability of clathrate hydrate: role of guest molecule motions. Sci Rep 7:1290

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vlasic TM, Servio PD, Rey AD (2017) Effect of guest size on the mechanical properties and molecular structure of gas hydrates from first-principles. Cryst Growth Des 17:6407–6416

    Article  CAS  Google Scholar 

  32. Pamuk B, Allen PB, Fernández-Serra MV (2018) Insights into the structure of liquid water from nuclear quantum effects on density and compressibility of ice polymorphs. J Phys Chem B 122:5694–5706

    Article  CAS  PubMed  Google Scholar 

  33. Rahman A, Stillinger FH (1972) Proton distribution in ice and the Kirkwood correlation factor. J Chem Phys 57:4009–4017

    Article  CAS  Google Scholar 

  34. Kuo JL, Coe JV, Singer SJ, Band YB, Ojamäe L (2001) On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J Chem Phys 114:2527–2540

    Article  CAS  Google Scholar 

  35. Kuo JL (2005) The low-temperature proton-ordered phases of ice predicted by ab initio methods. Phys Chem Chem Phys 7:3733–3737

    Article  CAS  PubMed  Google Scholar 

  36. Sloan Jr ED (1998) Clathrate hydrates of natural gases, 2nd edn. Dekker, New York

  37. Gudkovskikh SV, Kirov MV (2015) Topological crystallography of gas hydrates. Acta Cryst A 71:444–450

    Article  CAS  Google Scholar 

  38. Gudkovskikh SV, Kirov MV (2018) Energetics of water proton configurations in gas hydrates: comparison of various water models. Mol Simulat 44:358–363

    Article  CAS  Google Scholar 

  39. Ponder JW (2003) TINKER: software yools for molecular design, 4.1 edn. Washington University School of Medicine, Saint Louis

  40. Fortes AD (2018) Accurate and precise lattice parameters of H2O and D2O ice Ih between 1.6 and 270 K from highresolution time-of-flight neutron powder diffraction data. Acta Cryst B 74:196–216

    Article  CAS  Google Scholar 

  41. Leeuw SW, Perram JW, Smith ER (1980) Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc R Soc A 373:27–56

  42. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic, San Diego

  43. Herrero CP (2001) Isotope effects in structural and thermodynamic properties of solid neon. Phys Rev B 65:014112

    Article  Google Scholar 

  44. Salzmann CG, Slater B, Radaelli PG, Finney JL, Shephard JJ, Rosillo-Lopez M, Hindley J (2016) Detailed crystallographic analysis of the ice VI to ice XV hydrogen ordering phase transition. J Chem Phys 145:204501

    Article  PubMed  Google Scholar 

  45. Landau LD, Lifshitz EM (1986) Theory of elasticity, vol. 7, 3rd edn. Butterworth-Heinemann, Oxford

  46. Bower AF (2009) Applied mechanics of solids. CRC, Boca Raton

  47. Allen MP, Tildesley DJ (1989) Computer simulation of liquids, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  48. Tsai DH (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70:1375–1382

    Article  CAS  Google Scholar 

  49. Nye JF (1985) Physical properties of crystals. Oxford University Press, Oxford

    Google Scholar 

  50. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

  51. Gao G, Workum KV, Schall JD, Harrison JA (2006) Elastic constants of diamond from molecular dynamics simulation. J Phys Condens Matter 18:1737–1750

    Article  Google Scholar 

  52. Mehl MJ, Osburn JE, Papaconstantopoulos DA, Klein BM (1990) Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys Rev B 41:10311

    Article  CAS  Google Scholar 

  53. Jamal M, Asadabadi SJ, Ahmad I, Aliabad HAR (2014) Elastic constants of cubic crystals. Comput Mater Sci 95:592–599

    Article  CAS  Google Scholar 

  54. Shimizu H, Kumazaki T, Kume T, Sasaki S (2002) Elasticity of single-crystal methane hydrate at high pressure. Phys Rev B 65:212102

    Article  Google Scholar 

  55. Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J (2007) Crystal structures and elastic properties of superhard Ir N2 and Ir N3 from first principles. Phys Rev B 76:054115

    Article  Google Scholar 

  56. Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101:055504

    Article  PubMed  Google Scholar 

  57. Fast L, Wills JM, Johansson B, Eriksson O (1995) Elastic constants of hexagonal transition metals: theory. Phys Rev B 51:17431–17438

    Article  CAS  Google Scholar 

  58. Jamal M, Sarvestani NK, Yazdani A, Reshak AH (2014) Mechanical and thermodynamical properties of hexagonal compounds at optimized lattice parameters from two-dimensional search of the equation of state. RSC Adv 4:57903–57915

    Article  CAS  Google Scholar 

  59. Shein R, Kioeko VS, Makurin YN, Gorbunova MA, Ivanovskii AL (2007) Elastic parameters of single-crystal and polycrystalline Wurtzite-like oxides BeO and ZnO: ab initio calculations. Phys Solid State 49:1067–1073

    Article  CAS  Google Scholar 

  60. Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1998) Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys 84:4891–4904

    Article  CAS  Google Scholar 

  61. Reshak AH, Jamal M (2012) DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: a new package (ortho-elastic). J Alloys Compd 543:147–151

    Article  CAS  Google Scholar 

  62. Wen Y, Wang L, Liu H, Song L (2017) Ab initio study of the elastic and mechanical properties of B19 TiAl. Crystals 7:39

    Article  Google Scholar 

  63. Karttunen AJ, Harkonen VJ, Linnolahti M, Pakkanen TA (2011) Mechanical properties and low elastic anisotropy of semiconducting group 14 clathrate frameworks. J Phys Chem C 115:19925–19930

    Article  CAS  Google Scholar 

  64. Takeuchi F, Hiratsuka M, Ohmura R, Alavi S, Sum AK, Yasuoka K (2013) Water proton configurations in structures I, II, and H clathrate hydrate unit cells. J Chem Phys 138:124504

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A.L. Tchougreef for useful discussion. The present work was supported by the Basic Research Program of RAS No. IX.135.2.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Kirov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudkovskikh, S.V., Kirov, M.V. Proton disorder and elasticity of hexagonal ice and gas hydrates. J Mol Model 25, 32 (2019). https://doi.org/10.1007/s00894-018-3919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3919-x

Keywords

Navigation