Skip to main content
Log in

Aluminum cluster for CO and O2 adsorption

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Low temperature oxidation of CO to CO2 is an important process for the environment. Similarly adsorption of CO from the releasing sources is also of major concern today. Whereas the potential of gold and silver clusters is well proven for the catalysis of the above mentioned reaction, the potential of aluminum (Al) clusters remains unexplored. The present study proves that, similar to the transition metals, Al clusters can also be used for adsorption of gases. We first tested the potential of Al cluster as adsorbents for CO. The high binding energy (BE) values prove that Al clusters can be used for adsorbing both CO and O2. Since oxygen binding is more facile, we adsorbed oxygen on Al and then checked the effect of this O2 on the BE of CO. The results were obtained by DFT calculations at M062X/TZVP level of theory.

Activation of carbon monoxide (CO) on oxygen-adsorbed aluminum (Al) cluster

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bernhardt TM (2005) Int J Mass Spectrom 243:1–29

    Article  CAS  Google Scholar 

  2. Yin S, Bernstein ER (2012) Int J Mass Spectrom 321–322:49–65

    Article  Google Scholar 

  3. Bohme DK, Schwarz H (2005) Angew Chem Int Ed 44:2336–2354

    Article  Google Scholar 

  4. Schlangen M, Schwarz H (2012) Catal Lett 142:1265–1278

    Article  CAS  Google Scholar 

  5. Richard A, Hair JO, Khairallah GN (2004) J Clust Sci 15:3

    Article  Google Scholar 

  6. Castleman Jr A, Khanna S (2009) J Phys Chem C 113:2664–2675

    Article  CAS  Google Scholar 

  7. Luo Z, Castleman AW (2014) Acc Chem Res 47:2931–2940

    Article  CAS  Google Scholar 

  8. Alonso J (2005) Structure and properties of atomic nanoclusters. World Scientific, London

  9. Eric CT, Stefan V (2015) NAT Nanotechnology 10:577–588

    Article  Google Scholar 

  10. Vogel W, Lundquist JG, Ross P, Stonehart P (1975) Electrochim Acta 20:79

    Article  CAS  Google Scholar 

  11. Dhar HP, Christner LG, Kush AK (1987) J Electrochem Soc 134:302

    Article  Google Scholar 

  12. Lemons RA (1990) J Power Sources 29:251

    Article  CAS  Google Scholar 

  13. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  14. Lang SM, Bernhardt TM (2012) Phys Chem Chem Phys 14:9255–9269

    Article  CAS  Google Scholar 

  15. Pascucci B, Otero GS, Belelli PG, Illas F, Branda MM (2014) J Mol Model 20:2448

    Article  CAS  Google Scholar 

  16. Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Angew Chem 120:4913–4917

    Article  Google Scholar 

  17. Manzoor D, Krishnamurty S, Pal S (2014) J Phys Chem C 118:7501–7507

    Article  CAS  Google Scholar 

  18. Van Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerström R, Lundgren E, Frenken JWM (2010) J Phys Chem C 114:6875–6876

    Article  Google Scholar 

  19. Jarrold MF, Bower JE (1987) J Chem Phys 87:1610

    Article  CAS  Google Scholar 

  20. Jarrold MF, Bower JE (1987) J Chem Phys 87:5728

    Article  CAS  Google Scholar 

  21. Ruatta SA, Anderson SL (1988) J Chem Phys 89:273

    Article  CAS  Google Scholar 

  22. Leuchtner RE, Harms AC, Castleman Jr AW (1991) J Chem Phys 94:1093

    Article  CAS  Google Scholar 

  23. Batra IP, Kleinman L (1984) J Electron Spectrosc Relat Phenom 33:175–241

    Article  CAS  Google Scholar 

  24. Wang L, Kuklja MM (2010) J Phys Chem Solids 71:140–144

    Article  CAS  Google Scholar 

  25. Huang Y, Wang A, Wang X, Zhang T (2007) Int J Hydrog Energy 32:3880–3886

    Article  CAS  Google Scholar 

  26. Bergeron DE, Castleman AW, Morisato T, Khanna SN (2004) Science 304:84–87

    Article  CAS  Google Scholar 

  27. Bergeron D, Roach P, Castleman A, Jones N, Khanna S (2005) Science 307:231–235

    Article  CAS  Google Scholar 

  28. Reber AC, Khanna SN, Castleman AW (2007) J Am Chem Soc 129:10189–10194

    Article  CAS  Google Scholar 

  29. Bergeron D, Castleman A (2003) Chem Phys Lett 371:189–193

    Article  CAS  Google Scholar 

  30. Leuchtner R, Harms A, Castleman Jr A (1989) J Chem Phys 91:2753–2754

    Article  CAS  Google Scholar 

  31. Burgert R, Schnöckel H (2008) Chem Commun 18:2075–2089

    Article  Google Scholar 

  32. Burgert R, Stokes ST, Bowen KH, Schnöckel H (2006) J Am Chem Soc 128:7904–7908

    Article  CAS  Google Scholar 

  33. Leskiw B, Castleman Jr A, Ashman C, Khanna S (2001) J Chem Phys 114:1165–1169

    Article  CAS  Google Scholar 

  34. Burgert R, Schnöckel H, Grubisic A, Li X, Stokes ST, Bowen KH, Ganteför G, Kiran B, Jena P (2008) Science 319:438–442

    Article  CAS  Google Scholar 

  35. Neumaier M, Olzmann M, Kiran B, Bowen KH, Eichhorn B, Stokes ST, Buonaugurio A, Burgert R, Schnöckel H (2014) J Am Chem Soc 136:3607–3616

    Article  CAS  Google Scholar 

  36. Luo Z, Smith JC, Berkdemir C, Castleman A (2013) Chem Phys Lett 590:63–68

    Article  CAS  Google Scholar 

  37. Grubisic A, Li X, Gantefoer G, Bowen KH, Schnöckel H, Tenorio FJ, Martinez A (2009) J Chem Phys 131:184305

    Article  Google Scholar 

  38. Reber AC, Khanna SN, Roach PJ, Woodward WH, Castleman JA (2010) J Phys Chem A 114:6071–6081

    Article  CAS  Google Scholar 

  39. Bagus PS, Hermann CK, Bauschlicher Jr W (1984) J Chem Phys 80:4378

    Article  CAS  Google Scholar 

  40. Cox DM, Reichmann KC, Trevor DJ, Kaldor A (1988) J Chem Phys 88:111

    Article  CAS  Google Scholar 

  41. Pireaux JJ, Ghijsen J, JWm M, Verbist J, Caudano R (1979) Surf Sci 80:488–502

    Article  CAS  Google Scholar 

  42. Shiraki Y, Kobayashi KLI, Katayama Y (1978) Surf Sci 77:458–464

    Article  CAS  Google Scholar 

  43. Katayama Y, Kobayashi KLI, Shiraki Y (1979) Surf Sci 86:549–554

    Article  CAS  Google Scholar 

  44. Post D, Baerends EJ (1982) Surf Sci 116:177–187

    Article  CAS  Google Scholar 

  45. Cox M, Trevor DJ, Whetten RL, Kaldor A (1988) J Phys Chem 92:421

    Article  CAS  Google Scholar 

  46. Crowell JE, Yates Jr T (1986) Surf Sci 37:165

    Google Scholar 

  47. Hoffman A, Maniv T, Folman M (1987) Surf Sci 182:57

    Article  Google Scholar 

  48. Cox DM, Trevor DJ, Whetten RL, Kaldor A (1988) J Phys Chem 92:421–429

    Article  CAS  Google Scholar 

  49. Reber AC, Khanna SN, Roach PJ, Woodward WH, Castleman Jr AW (2007) J Am Chem Soc 129:16098–16101

    Article  CAS  Google Scholar 

  50. Johnson GE, Tyo EC, Castleman Jr AW (2008) J Phys Chem A 112:4732–4735

    Article  CAS  Google Scholar 

  51. Rondina GG, Da Silva JL (2013) J Chem Inf Model 53:2282–2298

    Article  CAS  Google Scholar 

  52. Candido L, Rabelo JT, Da Silva JL, Hai GQ (2012) Phys Rev B: Condens Matter Phys 85:245404

  53. Drebov N, Ahlrichs R (2010) J Chem Phys 132:164703

    Article  Google Scholar 

  54. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GJ, Fox DJ (2009) Gaussian 09, revision A.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  55. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  56. Xiao M, Lu T (2015) J Adv Phys Chem 4:111–124

    Article  CAS  Google Scholar 

  57. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  58. Glendening E, Badenhoop J, Reed A, Carpenter J, Weinhold F (1996) NBO, version 3.1. Theoretical Chemistry Institute University of Wisconsin, Madison, WI

    Google Scholar 

  59. Duarte HA, Salahub DR (1998) J Chem Phys 108:743

    Article  CAS  Google Scholar 

  60. Lacaze-Dufaure C, Blanc C, Mankowski G, Mijoule C (2007) Surf Sci 601:1544–1553

    Article  CAS  Google Scholar 

  61. Socaciu LD, Hagen J, Bernhardt TM, Woste L, Heiz U, Hakkinen H, Landman U (2003) J Am Chem Soc 125:10437

    Article  CAS  Google Scholar 

  62. Wedler G, Papp H, Schroll G (1974) Surf Sci 44:463

    Article  CAS  Google Scholar 

  63. Helms CR, Madix RJ (1975) Surf Sci 52:677

    Article  CAS  Google Scholar 

  64. Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou M, Cohen ML (1984) Phys Rev Lett 52:2141–2143

  65. Veldeman N, Lievens P, Andersson M (2005) J Phys Chem A 109:11793–11801

    Article  CAS  Google Scholar 

  66. Dar M, Krishnamurty S, Pal S (2016) Phys Chem Chem Phys 18:7068

    Article  Google Scholar 

  67. Kalita B, Deka RC (2009) Eur Phy J D 53:51–58

    Article  CAS  Google Scholar 

  68. Bagus PS, Nelin CJ, Bauschlicher Jr CW (1984) J Vac Sci Technol A 2:905

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.S. would like to thank IITB for providing a Teaching Assistant fellowship and high performance computation facilities. T.S. would like to thank the University Grant Commission (UGC) for a Senior Research Fellowship (SRF). The authors acknowledge the Center of Excellence in Scientific Computing at CSIR-NCL. S.P. acknowledges the J.C. Bose Fellowship grant of SERB, India, towards partial fulfillment of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bipasa Samanta or Sourav Pal.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

ESM 1

(DOCX 449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, B., Sengupta, T. & Pal, S. Aluminum cluster for CO and O2 adsorption. J Mol Model 25, 2 (2019). https://doi.org/10.1007/s00894-018-3869-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3869-3

Keywords

Navigation