Skip to main content
Log in

Insight into the gas phase dissociation of CF3CH2I and its reactions with H and OH by first principles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Arrhenius kinetic parameters of dissociation reactions and reactions of CF3CH2I with radicals like H, O, and OH are determined using highly accurate first principles calculations. Thermophysical properties like molar heat capacity (Cp), thermal stability index, and the bond dissociation energies are also determined for the CF3CH2I molecule under the PBE/DNP formalism. Since, there are no theoretical study or experimental investigation reports available regarding the dissociation reactions of CF3CH2I and reactions of this molecule with the H and OH radical, a parallel comparative analysis is done with similar iodoalkanes to ascertain the precision of the results obtained. The atmospheric lifetime of 0.54 years is obtained for this molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Solomon S, Garcia RR, Ravishankara AR (1994) On the role of iodine in ozone depletion. J Geophys Res Atmos 99(D10):20491–20499

    Article  Google Scholar 

  2. Marshall P, Misra A, Berry RJ (1997) Computational studies of the reactions of CH3I with H and OH. Chem Phys Lett 265(1–2):48–54

    Article  CAS  Google Scholar 

  3. Espinosa-Garcia J (2002) Reaction-path dynamics calculations using integrated methods. The CF3CH3+ OH hydrogen abstraction reaction. J Phys Chem A 106(23):5686–5696

    Article  CAS  Google Scholar 

  4. Stevens JE, Davis LW, Mertes CD (2007) Reactions of CF3CH2 I+ O (3P): competing mechanisms of HF elimination. J Chem Phys 126(7):074310

    Article  Google Scholar 

  5. Berry RJ, Yuan J, Misra A, Marshall P (1998) Experimental and computational investigations of the reaction of OH with CF3I and the enthalpy of formation of HOI. J Phys Chem A 102(27):5182–5188

    Article  CAS  Google Scholar 

  6. Zhao K, Yu X, Chen L, Hou H, Jiang Y, Zhang C, Wang B (2016) Theoretical investigations on mechanisms and kinetics of the O+CF3I reaction. Comput Theor Chem 1096:80–88

    Article  CAS  Google Scholar 

  7. Cotter ES, Canosa-Mas CE, Manners CR, Wayne RP, Shallcross DE (2003) Kinetic study of the reactions of OH with the simple alkyl iodides: CH3I, C2H5I, 1-C3H7I and 2-C3H7I. Atmos Environ 37(8):1125–1133

    Article  CAS  Google Scholar 

  8. Marcy TP, Reid JP, Qian CX, Leone SR (2001) Addition-insertion-elimination reactions of O (3P) with halogenated iodoalkanes producing HF (v) and HCl (v). J Chem Phys 114(5):2251–2258

    Article  CAS  Google Scholar 

  9. Nakano Y, Shibata Y, Watanabe K (2017) Experimental estimation of the atmospheric lifetimes of CF2HI, CF3CH2I, CF3 (CH2)2I and CF3(CH2)3I with removal via the sunlight photolysis and the reactions with NO3. React Kinet Mech Catal 122(1):3–19

    Article  CAS  Google Scholar 

  10. Delley B (2006) Ground-state enthalpies: evaluation of electronic structure approaches with emphasis on the density functional method. J Phys Chem A 110(50):13632–13639

    Article  CAS  Google Scholar 

  11. Inada Y, Orita H (2008) Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets. J Comput Chem 29(2):225–232

    Article  CAS  Google Scholar 

  12. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101

    Article  Google Scholar 

  13. Miller WH (1979) Tunneling corrections to unimolecular rate constants, with application to formaldehyde. J Am Chem Soc 101(23):6810–6814

    Article  CAS  Google Scholar 

  14. Okafo EN, Whittle E (1975) The kinetics of the thermal bromination of CF3I. Determination of the bond dissociation energy D (CF3−I). In J Chem Kinet 7(2):273–285

    Article  CAS  Google Scholar 

  15. Lide DR (1995) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC, Boca Raton

    Google Scholar 

  16. Chandra AK, Uchimaru T (2000) A DFT study on the C− H bond dissociation enthalpies of Haloalkanes: correlation between the bond dissociation enthalpies and activation energies for hydrogen abstraction. J Phys Chem A 104(40):9244–9249

    Article  CAS  Google Scholar 

  17. Varga T, Zsély IG, Turányi T, Bentz T, Olzmann M (2014) Kinetic analysis of ethyl iodide pyrolysis based on shock tube measurements. In J Chem Kinet 46(6):295–304

    Article  CAS  Google Scholar 

  18. Reid JP, Qian CX, Leone SR (2000) Probing the cyclic transition state in the reaction O (3P) + alkyl iodides to form HOI: electronic, steric and thermodynamic factors influencing the reaction pathway. Phys Chem Chem Phys 2(4):853–860

    Article  CAS  Google Scholar 

  19. Dellinger B, Lamb CW, Kumar P, Lanza R, Wagner M (2010) Theoretical estimation of incinerability of halons and hydrochlorofluorocarbons. Environ Eng Sci 27(7):587–591. https://doi.org/10.1089/ees.2009.0393

    Article  CAS  Google Scholar 

  20. Tirey D, Dellinger B, Rubey W, Taylor P (1992) The thermal degradation characteristics of environmentally sensitive pesticide products. University of Dayton Research Institute, Dayton

  21. Li K, Kennedy EM, Dlugogorski BZ (2000) Experimental and computational studies of the pyrolysis of CBrF3, and the reaction of CBrF3 with CH4. Chem Eng Sci 55(19):4067–4078

    Article  CAS  Google Scholar 

  22. Yu H, Kennedy EM, Uddin MA, Sullivan SP, Dlugogorski BZ (2005) Experimental and computational studies of the thermal decomposition of halon 1211. In J Chem Kinet 37(3):134–146

    Article  CAS  Google Scholar 

  23. Bentz T, Szőri M, Viskolcz B, Olzmann M (2011) Pyrolysis of ethyl iodide as hydrogen atom source: kinetics and mechanism in the temperature range 950–1200 K. Z Phys Chem 225(9–10):1117–1128

    Article  CAS  Google Scholar 

  24. Westbrook CK (1982) Inhibition of hydrocarbon oxidation in laminar flames and detonations by halogenated compounds. In: Symposium (international) on combustion. https://doi.org/10.1016/S0082-0784(82)80185-9

    Article  Google Scholar 

  25. Yuan J, Wells L, Marshall P (1997) Kinetic studies of the reactions of atomic hydrogen with iodoalkanes. J Phys Chem A 101(19):3542–3546

    Article  CAS  Google Scholar 

  26. Stevens JE, Cui Q, Morokuma K (1998) An ab initio investigation of spin-allowed and spin-forbidden pathways of the gas phase reactions of O (3P) + C2H5I. J Chem Phys 108(4):1544–1551

    Article  CAS  Google Scholar 

  27. Rajakumar B, Arunan E (2003) Ab initio, DFT and transition state theory calculations on 1, 2-HF, HCI and CIF elimination reactions from CH2F–CH2Cl. Phys Chem Chem Phys 5(18):3897–3904

    Article  CAS  Google Scholar 

  28. Marcoux PJ, Setser DW (1978) Vibrational energy transfer probabilities of highly vibrationally excited 1,1,1-trifluoroethane. J Phys Chem 82(1):97–108

    Article  CAS  Google Scholar 

  29. Zhang L, Qin QZ (2001) Computational studies on the reaction pathways of CF3Br with O (1D, 3P) atoms. J Phys Chem A 105(1):215–218

    Article  CAS  Google Scholar 

  30. Arey J (1998) Atmospheric reactions of PAHs including formation of nitroarenes. In: PAHs and related compounds. Springer, Berlin

    Google Scholar 

  31. Burkholder JB, Wilson RR, Gierczak T, Talukdar R, McKeen SA, Orlando JJ, Vaghjiani GL, Ravishankara AR (1991) Atmospheric fate of CF3Br, CF2Br2, CF2ClBr, and CF2BrCF2Br. J Geophys Res Atmos 96(D3):5025–5043

    Article  CAS  Google Scholar 

  32. Casias CR, McKinnon JT (1998) A modeling study of the mechanisms of flame inhibition by CF3Br fire suppression agent. In: Symposium (international) on combustion. https://doi.org/10.1016/S0082-0784(98)80129-X

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to DRDO, India for financial support to carry out this work. One of the authors (SA) is thankful to CSIR, India for research fellowship. None of the authors have any competing interests in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameer, S., Tomar, M., Jha, P.K. et al. Insight into the gas phase dissociation of CF3CH2I and its reactions with H and OH by first principles. J Mol Model 24, 315 (2018). https://doi.org/10.1007/s00894-018-3847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3847-9

Keywords

Navigation