Skip to main content
Log in

Structures, intermolecular interactions, and chemical hardness of binary water–organic solvents: a molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The evolution of structural properties, thermodynamics and averaged (dynamic) total hardness values as a function of the composition of binary water–organic solvents, was rationalized in view of the intermolecular interactions. The organic solvents considered were ethanol, acetonitrile, and isopropanol at 0.25, 0.5, 0.75, and 1 mass fractions, and the results were obtained using molecular dynamics simulations. The site-to-site radial distribution functions reveal a well-defined peak for the first coordination shell in all solvents. A characteristic peak of the second coordination shell exists in aqueous mixtures of acetonitrile, whereas in the water–alcohol solvents, a second peak develops with the increase in alcohol content. From the computed coordination numbers, averaged hydrogen bonds and their lifetimes, we found that water mixed with acetonitrile largely preserves its structural features and promotes the acetonitrile structuring. Both the water and alcohol structures in their mixtures are disturbed and form hydrogen bonds between molecules of different kinds. The dynamic hardness values are obtained as the average over the total hardness values of 1200 snapshots per solvent type, extracted from the equilibrium dynamics. The dynamic hardness profile has a non-linear evolution with the liquid compositions, similarly to the thermodynamic properties of these non-ideal solvents.

Computed dynamic total hardness, as a function of the cosolvent mass fraction for water–ethanol (EtOH), water–isopropanol (2PrOH) and water–acetonitrile (AN)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saiz L, Padro JA, Guardia E (1999) Dynamics and hydrogen bonding in liquid ethanol. Mol Phys 97(7):897–905

    CAS  Google Scholar 

  2. Chang S et al (2012) Solvent polarity and internal stresses control the swelling behaviour of green wood during dehydration in organic solution. Bioresources 7(2):2418–2430

    Google Scholar 

  3. Smith MD et al (2016) Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics. Green Chem 18(5):1268–1277

    CAS  Google Scholar 

  4. Smith MD et al (2016) Molecular driving forces behind the tetrahydrofuran–water miscibility gap. J Phys Chem B 120(4):740–747

    CAS  PubMed  Google Scholar 

  5. Li M-F, Yang S, Sun R-C (2016) Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresour Technol 200:971–980

    CAS  PubMed  Google Scholar 

  6. Bossu J, Le Moigne N, Corn S, Trens P, Di Renzo F (2018) Sorption of water–ethanol mixtures by poplar wood: swelling and viscoelastic behaviour. Wood Sci Technol 52(4):987–1008. https://doi.org/10.1007/s00226-018-1022-1

  7. Jawad ZA et al (2016) The role of solvent mixture, acetic acid and water in the formation of CA membrane for CO2/N2 separation. Procedia Eng 148:327–332

    CAS  Google Scholar 

  8. Pires RM et al (2007) Viscosity and density of water + ethyl acetate + ethanol mixtures at 298.15 and 318.15 K and atmospheric pressure. J Chem Eng Data 52(4):1240–1245

    CAS  Google Scholar 

  9. Hurle RL, Easteal AJ, Woolf LA (1985) Self-diffusion in monohydric alcohols under pressure. Methanol, methan (2 H) ol and ethanol. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 81(3):769–779

    CAS  Google Scholar 

  10. Pang F-M et al (2007) Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J Mol Liq 136(1):71–78

    CAS  Google Scholar 

  11. Grande MdC, Bianchi HL, Marschoff CM (2004) On the density of pure acetonitrile. Anales de la Asociación Química Argentina 92:109–114

    CAS  Google Scholar 

  12. Cunningham GP, Vidulich GA, Kay RL (1967) Several properties of acetonitrile-water, acetonitrile-methanol, and ethylene carbonate-water systems. J Chem Eng Data 12(3):336–337

    CAS  Google Scholar 

  13. Lide DR (2004) CRC handbook of chemistry and physics. 12J204

  14. Peeters D, Huyskens P (1993) Endothermicity or exothermicity of water/alcohol mixtures. J Mol Struct 300(Supplement C):539–550

    CAS  Google Scholar 

  15. Stokes RH (1987) Excess partial molar enthalpies for (acetonitrile + water) from 278 to 318 K. J Chem Thermodyn 19(9):977–983

    CAS  Google Scholar 

  16. Wakisaka A et al (1998) Non-ideality of binary mixtures water–methanol and water–acetonitrile from the viewpoint of clustering structure. J Chem Soc Faraday Trans 94(3):369–374

  17. Shaker-Gaafar N et al (1993) p,T-dependence of self-diffusion in liquid ethanol and the propanols. Ber Bunsenges Phys Chem 97(6):805–811

    CAS  Google Scholar 

  18. Hurle RL, Woolf LA (1982) Self-diffusion in liquid acetonitrile under pressure. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 78(7):2233–2238

    CAS  Google Scholar 

  19. Li Z et al (2017) Molecular dynamics simulation of self-diffusion coefficients for several alkanols. Russ J Phys Chem A 91(7):1260–1269

    CAS  Google Scholar 

  20. Akerlof G (1932) Dielectric constants of some organic solvent-water mixtures at various temperatures. J Am Chem Soc 54(11):4125–4139

    CAS  Google Scholar 

  21. Wyman J (1931) The dielectric constant of mixtures of ethyl alcohol and water from-5 to 40. J Am Chem Soc 53(9):3292–3301

    CAS  Google Scholar 

  22. Venables DS, Schmuttenmaer CA (1998) Far-infrared spectra and associated dynamics in acetonitrile–water mixtures measured with femtosecond THz pulse spectroscopy. J Chem Phys 108(12):4935–4944

    CAS  Google Scholar 

  23. Rivelino R et al (2005) Electronic polarization in liquid acetonitrile: a sequential Monte Carlo/quantum mechanics investigation. Chem Phys Lett 407(1):13–17

    CAS  Google Scholar 

  24. Jorgensen WL, Briggs JM (1988) Monte Carlo simulations of liquid acetonitrile with a three-site model. Mol Phys 63(4):547–558

    CAS  Google Scholar 

  25. Evans M (1983) Molecular dynamics and structure of liquid acetonitrile—a review and computer simulation. J Mol Liq 25(3):149–175

    CAS  Google Scholar 

  26. Oldiges C et al (2002) MD calculated structural properties of clusters in liquid acetonitrile/water mixtures with various contents of acetonitrile. J Phys Chem A 106(31):7147–7154

    CAS  Google Scholar 

  27. Nikitin AM, Lyubartsev AP (2007) New six-site acetonitrile model for simulations of liquid acetonitrile and its aqueous mixtures. J Comput Chem 28(12):2020–2026

    CAS  PubMed  Google Scholar 

  28. Lindquist BA, Haws RT, Corcelli SA (2008) Optimized quantum mechanics/molecular mechanics strategies for nitrile vibrational probes: acetonitrile and para-tolunitrile in water and tetrahydrofuran. J Phys Chem B 112(44):13991–14001

    CAS  PubMed  Google Scholar 

  29. Sato T, Chiba A, Nozaki R (2000) Hydrophobic hydration and molecular association in methanol–water mixtures studied by microwave dielectric analysis. J Chem Phys 112(6):2924–2932

    CAS  Google Scholar 

  30. Sato T, Chiba A, Nozaki R (1999) Dynamical aspects of mixing schemes in ethanol–water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process. J Chem Phys 110(5):2508–2521

    CAS  Google Scholar 

  31. Sato T, Chiba A, Nozaki R (2000) Composition-dependent dynamical structures of 1-propanol–water mixtures determined by dynamical dielectric properties. J Chem Phys 113(21):9748–9758

    CAS  Google Scholar 

  32. Sato T, Buchner R (2003) Dielectric relaxation spectroscopy of 2-propanol–water mixtures. J Chem Phys 118(10):4606–4613

    CAS  Google Scholar 

  33. Matsugami M et al (2016) Hydrogen bonding in ethanol–water and trifluoroethanol–water mixtures studied by NMR and molecular dynamics simulation. J Mol Liq 217:3–11

    CAS  Google Scholar 

  34. Pozar M et al (2016) Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes. Phys Chem Chem Phys 18(34):23971–23979

    CAS  PubMed  Google Scholar 

  35. Petong P, Pottel R, Kaatze U (2000) Water−ethanol mixtures at different compositions and temperatures. A dieletric relaxation study. J Phys Chem A 104(32):7420–7428

    CAS  Google Scholar 

  36. Saiz L, Padró JA, Guàrdia E (1997) Structure and dynamics of liquid ethanol. J Phys Chem B 101(1):78–86

    CAS  Google Scholar 

  37. Lam RK, Smith JW, Saykally RJ (2016) Communication: hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy. J Chem Phys 144(19):191103

    PubMed  Google Scholar 

  38. Finneran IA et al (2015) Hydrogen bonding in the ethanol-water dimer. Phys Chem Chem Phys 17(37):24210–24214

    CAS  PubMed  Google Scholar 

  39. Alavi S et al (2010) Hydrogen-bonding alcohol-water interactions in binary ethanol, 1-propanol, and 2-propanol+methane structure II clathrate hydrates. J Chem Phys 133(7):074505

    PubMed  Google Scholar 

  40. Pothoczki S, Pusztai L (2017) Intermolecular orientations in liquid acetonitrile: new insights based on diffraction measurements and all-atom simulations. J Mol Liq 225:160–166

    CAS  Google Scholar 

  41. Robertson RE, Sugamori SE (1972) The hydrolysis of t-butyl chloride in aquo-organic mixtures: heat capacity of activation and solvent structure. Can J Chem 50(9):1353–1360

    CAS  Google Scholar 

  42. Moreau C, Douhéret G (1975) Thermodynamic behavior of water-acetonitrile mixtures excess volumes and viscosities. Thermochim Acta 13(4):385–392

    CAS  Google Scholar 

  43. Damewood JR, Kumpf RA (1987) Hydration of polar organic molecules: the interaction of acetonitrile with water. J Phys Chem 91(12):3449–3452

    CAS  Google Scholar 

  44. Kovacs H, Laaksonen A (1991) Molecular dynamics simulation and NMR study of water-acetonitrile mixtures. J Am Chem Soc 113(15):5596–5605

    CAS  Google Scholar 

  45. Bertie JE, Lan Z (1997) Liquid water−acetonitrile mixtures at 25 °C: the hydrogen-bonded structure studied through infrared absolute integrated absorption intensities. J Phys Chem B 101(20):4111–4119

    CAS  Google Scholar 

  46. Takamuku T et al (1998) Liquid structure of acetonitrile−water mixtures by X-ray diffraction and infrared spectroscopy. J Phys Chem B 102(44):8880–8888

    CAS  Google Scholar 

  47. Bakó I, Megyes T, Pálinkás G (2005) Structural investigation of water–acetonitrile mixtures: an ab initio, molecular dynamics and X-ray diffraction study. Chem Phys 316(1):235–244

    Google Scholar 

  48. Rowlen KL, Harris JM (1991) Raman spectroscopic study of solvation structure in acetonitrile/water mixtures. Anal Chem 63(10):964–969

    CAS  Google Scholar 

  49. Abraham MJ et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Google Scholar 

  50. Bekker H, Berendsen HJC, Dijkstra EJ, Achterop S, Vondrumen R, Vanderspoel D, Sijbers A, Keegstra H, Renardus MKR (1993) GROMACS: a parallel computer for molecular dynamics simulations. In: DeGroot RA, Nadrchal J (eds) Physics computing '92. World Scientific, Songapore, pp 252–256

  51. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1):43–56

    CAS  Google Scholar 

  52. Van Der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Google Scholar 

  53. Páll S et al Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis S, Laure E (eds) Solving software challenges for exascale: international conference on exascale applications and software, EASC 2014, Stockholm, Sweden, April 2–3, 2014, Revised Selected Papers 2015, Springer, Cham, pp 3–27

  54. Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD Jr (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564

  55. Guvench O, Hatcher ER, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370

  56. Jorgensen WL et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    CAS  Google Scholar 

  57. Dick TJ, Madura JD (2005) Chapter 5, A Review of the TIP4P, TIP4P-Ew, TIP5P, and TIP5P-E Water Models. in Annual Reports in Computational Chemistry. Elsevier, p 59–74

  58. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105(43):9954–9960

    CAS  Google Scholar 

  59. van der Spoel D, van Maaren PJ, Caleman C (2012) GROMACS molecule & liquid database. Bioinformatics 28(5):752–753

    PubMed  Google Scholar 

  60. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50(5):1055–1076

    Google Scholar 

  61. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190

    CAS  Google Scholar 

  62. Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55

    CAS  Google Scholar 

  63. Luzar A (2000) Resolving the hydrogen bond dynamics conundrum. J Chem Phys 113(23):10663–10675

    CAS  Google Scholar 

  64. van der Spoel D et al (2006) Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. J Phys Chem B 110(9):4393–4398

    PubMed  Google Scholar 

  65. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    CAS  Google Scholar 

  66. Pearson RG (1997) Chemical hardness. Wiley Online Library

  67. Parr RG et al (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68(8):3801–3807

    CAS  Google Scholar 

  68. Nalewajski RF (1993) The hardness based molecular charge sensitivities and their use in the theory of chemical reactivity. In: Sen KD (ed) Chemical hardness. Springer, Berlin, pp 115–186

  69. Neshev N, Mineva TZ (1996) The role of interelectronic interaction in transition metal oxide catalysts. In: Russo N, Salahub DR (eds) MMetal-ligand interactions: structure and reactivity. Springer, Dordrecht, pp 361–405

  70. Senet P (1996) Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground-state electronic density. J Chem Phys 105(15):6471–6489

    CAS  Google Scholar 

  71. Senet P (1997) Kohn-sham orbital formulation of the chemical electronic responses, including the hardness. J Chem Phys 107(7):2516–2524

    CAS  Google Scholar 

  72. Chandrakumar KRS, Pal S (2002) A systematic study on the reactivity of Lewis acid−base complexes through the local hard−soft acid−base principle. J Phys Chem A 106(48):11775–11781

    CAS  Google Scholar 

  73. Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem Rev 107(9):PR46–PR74

    CAS  Google Scholar 

  74. Mineva T, Heine T (2004) Efficient computation of density-functional orbitally resolved reactivity indices. J Phys Chem A 108(50):11086–11091

    CAS  Google Scholar 

  75. Mineva T et al (1997) Density functional potential-energy hypersurface and reactivity indices in the isomerization of X3H+ (X = O, S, Se, Te). J Chem Soc Faraday Trans 93(18):3309–3312

    CAS  Google Scholar 

  76. Mineva T, Sicilia E, Russo N (1998) Density-functional approach to hardness evaluation and its use in the study of the maximum hardness principle. J Am Chem Soc 120(35):9053–9058

    CAS  Google Scholar 

  77. Mineva T et al (1999) Gas-phase properties and Fukui indices of sulfine (CH2SO). Potential energy surface and maximum hardness principle for its protonation process. A density functional study. Theor Chem Accounts 101(6):388–395

    CAS  Google Scholar 

  78. Madjarova G et al (2005) Selectivity descriptors for the Michael addition reaction as obtained from density functional based approaches. J Phys Chem A 109(2):387–393

    CAS  PubMed  Google Scholar 

  79. Mineva T (2006) Selectivity study from the density functional local reactivity indices. J Mol Struct THEOCHEM 762(1):79–86

    CAS  Google Scholar 

  80. Mineva T, Thomas H (2006) Orbital hardness tensors from hydrogen through xenon from Kohn–Sham perturbed orbitals. Int J Quantum Chem 106(6):1396–1405

    CAS  Google Scholar 

  81. Ohno K (1967) Molecular orbital calculations of Φ electron systems. In: Löwdin PO (ed) Advances in quantum chemistry. Academic, New York, pp 239–322

  82. Bjelkmar P et al (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6(2):459–466

    CAS  PubMed  Google Scholar 

  83. Anisimov VM et al (2007) Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. J Chem Theory Comput 3(6):1927–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Guàrdia E et al (2001) Comparison of different three-site interaction potentials for liquid acetonitrile. Mol Simul 26(4):287–306

    Google Scholar 

  85. Soper AK, Phillips MG (1986) A new determination of the structure of water at 25°C. Chem Phys 107(1):47–60

    CAS  Google Scholar 

  86. Jerie K et al (2005) Structure of aqueous solutions of acetonitrile investigated by acoustic and positron annihilation measurements. Acta Physica Polonica-Series A General Physics 107(5):826–831

    CAS  Google Scholar 

  87. Xu H, Stern HA, Berne BJ (2002) Can water polarizability be ignored in hydrogen bond kinetics? J Phys Chem B 106(8):2054–2060

    CAS  Google Scholar 

  88. Soper AK, Bruni F, Ricci MA (1997) Site–site pair correlation functions of water from 25 to 400 °C: revised analysis of new and old diffraction data. J Chem Phys 106(1):247–254

    CAS  Google Scholar 

  89. Noskov SY, Lamoureux G, Roux B (2005) Molecular dynamics study of hydration in ethanol−water mixtures using a polarizable force field. J Phys Chem B 109(14):6705–6713

    CAS  PubMed  Google Scholar 

  90. Salamatova E et al (2017) Hydrogen bond and lifetime dynamics in diluted alcohols. Phys Chem Chem Phys 19(41):27960–27967

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocation 2017 [×2017087369] made by GENCI (Grand Equipement National de Calcul Intensif] and was partially funded through the ENSCM SINCHEM EMJD PhD grant. SINCHEM is a Joint Doctorate programme selected under the Erasmus Mundus Action 1 Programme (FPA 2013-0037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonka Mineva.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

ESM 1

(PDF 964 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera-Segura, S.M., Di Renzo, F. & Mineva, T. Structures, intermolecular interactions, and chemical hardness of binary water–organic solvents: a molecular dynamics study. J Mol Model 24, 292 (2018). https://doi.org/10.1007/s00894-018-3817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3817-2

Keywords

Navigation