Skip to main content
Log in

Structural and dynamic characterization of human Wnt2-Fzd7 complex using computational approaches

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Wnt and Frizzled (Fzd) family members play crucial roles in the self-renewal of tumor-initiating cells. Until now, only a few studies have addressed the distinct mechanism of Wnt–Fzd interactions. In this study, we suggest a possible interaction mode of Wnt2 with the Fzd7 cysteine-rich domain (CRD)—both of which are up-regulated in some types of cancer. A combination of homology modeling, molecular docking and molecular dynamics (MD) simulations was carried out to study this ligand–receptor complex in great detail. The results demonstrated the unique dynamic behavior of Wnt2 upon binding to Fzd7. Interestingly, the β-strand content of the C-terminal binding site of Wnt2 was obviously reduced when bound to Fzd7 CRD. Moreover, the N-terminal and C-terminal binding sites of Wnt2 appeared to interact with the C-terminal and N-terminal binding sites of Fzd7, respectively. Calculation of the binding energies uncovered the pivotal role of electrostatic and hydrophobic interactions in the binding of Wnt2 to Fzd7 CRD. In conclusion, this study provides valuable insights into the mechanism of the Wnt2-Fzd7 CRD interaction for application in colorectal cancer prevention programs.

Flowchart representation of different steps used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a–d
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 a–c
Fig. 7
Fig. 8 a–d
Fig. 9 a,b
Fig. 10 a–c

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

CN:

Cluster number

CRC:

Colorectal cancer

CRD:

Cysteine-rich domain

CTD:

C-terminal domain

DKK:

Dikpoff

DOPE:

Discrete optimized potential energy

FZD:

Frizzled

HM:

Homology modeling

LRP:

Lipoprotein receptor related protein

LE:

Lowest energy

mFZD:

mouse frizzled

MD:

Molecular dynamics

NTD:

N-terminal domain

PDB:

Protein Data Bank

Pdf:

Probability density function

Rg:

Radius of gyration

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuations

SASA:

Solvent accessible surface area

SPC:

Simple point charge

TCF:

Transcription cell factor

Wnt:

Wingless Int

xWNT:

Xenopus Wnt

References

  1. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11

    CAS  PubMed  Google Scholar 

  2. Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5):a008052

    PubMed  PubMed Central  Google Scholar 

  3. Myant K, Sansom OJ (2014) Wnt signaling and colorectal cancer. In: Hoppler S, Moon R (eds) Wnt signaling in development and disease. Wiley, New York, pp 357–367

  4. Dimitriadis A, Vincan E, Mohammed IM, Roczo N, Phillips WA, Baindur-Hudson S (2001) Expression of Wnt genes in human colon cancers. Cancer Lett 166(2):185–191

    CAS  PubMed  Google Scholar 

  5. Akiyama T (2000) Wnt/β-catenin signaling. Cytokine Growth Factor Rev 11(4):273–282

    CAS  PubMed  Google Scholar 

  6. Chu ML-H, Ahn VE, Choi H-J, Daniels DL, Nusse R, Weis WI (2013) Structural studies of Wnts and identification of an LRP6 binding site. Structure 21(7):1235–1242

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science 337:59–64

  8. Holcombe R, Marsh J, Waterman M, Lin F, Milovanovic T, Truong T (2002) Expression of Wnt ligands and frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol 55(4):220

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bravo DT, You L, Mazieres J, He B, Xu Z, Jablons DM (2008) Targeting Wnt-2 in mesothelioma and lung cancer. Clin Lung Cancer 9(5):289

    Google Scholar 

  10. Mazieres J, You L, He B, Xu Z, Twogood S, Lee AY, Reguart N, Batra S, Mikami I, Jablons DM (2005) Wnt2 as a new therapeutic target in malignant pleural mesothelioma. Int J Cancer 117(2):326–332

    CAS  PubMed  Google Scholar 

  11. Jung Y-S, Jun S, Lee SH, Sharma A, Park J-I (2015) Wnt2 complements Wnt/β-catenin signaling in colorectal cancer. Oncotarget 6(35):37257

    PubMed  PubMed Central  Google Scholar 

  12. You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N, Mikami I, Reguart N, McIntosh JK, Kashani-Sabet M (2004) An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 64(15):5385–5389

    CAS  PubMed  Google Scholar 

  13. Shi Y, He B, Kuchenbecker KM, You L, Xu Z, Mikami I, Yagui-Beltran A, Clement G, Lin YC, Okamoto J (2007) Inhibition of Wnt-2 and galectin-3 synergistically destabilizes β-catenin and induces apoptosis in human colorectal cancer cells. Int J Cancer 121(6):1175–1181

    CAS  PubMed  Google Scholar 

  14. Ueno K, Hirata H, Hinoda Y, Dahiya R (2013) Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. Int J Cancer 132(8):1731–1740

    CAS  PubMed  Google Scholar 

  15. Ueno K, Hiura M, Suehiro Y, Hazama S, Hirata H, Oka M, Imai K, Dahiya R, Hinoda Y (2008) Frizzled-7 as a potential therapeutic target in colorectal cancer. Neoplasia 10(7):697–705

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15

  17. Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31(13):3316–3319

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(suppl_2):W244–W248

    PubMed  PubMed Central  Google Scholar 

  19. Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    CAS  PubMed  Google Scholar 

  20. Berjanskii M, Liang Y, Zhou J, Tang P, Stothard P, Zhou Y, Cruz J, MacDonell C, Lin G, Lu P (2010) PROSESS: a protein structure evaluation suite and server. Nucleic Acids Res 38(suppl_2):W633–W640

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    CAS  Google Scholar 

  22. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

  23. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl_2):W407–W410

    PubMed  PubMed Central  Google Scholar 

  25. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(1):12–21

    CAS  PubMed  Google Scholar 

  26. Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41(W1):W384–W388

    PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Google Scholar 

  29. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1):45–50

    CAS  PubMed  Google Scholar 

  30. Van Zundert G, Rodrigues J, Trellet M, Schmitz C, Kastritis P, Karaca E, Melquiond A, van Dijk M, De Vries S, Bonvin A (2016) The HADDOCK2. 2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428(4):720–725

    PubMed  Google Scholar 

  31. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 newsletter on protein crystallography 40:82–92

  32. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

  33. Tina K, Bhadra R, Srinivasan N (2007) PIC: protein interactions calculator. Nucleic Acids Res 35(suppl_2):W473–W476

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brenke R, Hall DR, Chuang G-Y, Comeau SR, Bohnuud T, Beglov D, Schueler-Furman O, Vajda S, Kozakov D (2012) Application of asymmetric statistical potentials to antibody–protein docking. Bioinformatics 28(20):2608–2614

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vangone A, Bonvin AM (2015) Contacts-based prediction of binding affinity in protein–protein complexes. Elife 4:PMC4523921

  36. Jo S, Vargyas M, Vasko-Szedlar J, Roux B, Im W (2008) PBEQ-solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res 36(suppl_2):W270–W275

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ichiye T, Karplus M (1991) Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins 11(3):205–217

    CAS  PubMed  Google Scholar 

  38. Poorebrahim M, Sadeghi S, Rahimi H, Karimipoor M, Azadmanesh K, Mazlomi MA, Teimoori-Toolabi L (2017) Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency. PLoS One 12(2):e0172217

    PubMed  PubMed Central  Google Scholar 

  39. Rismani E, Rahimi H, Arab SS, Azadmanesh K, Karimipoor M, Teimoori-Toolabi L (2017) Computationally Design of Inhibitory Peptides Against Wnt Signaling Pathway: In Silico Insight on Complex of DKK1 and LRP6. Int J Peptide Res Ther 2017:1–12

  40. Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, Yan KS, Marecic O, Siepe D, Li X (2017) Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 545(7653):234

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Katoh M (2001) Frequent up-regulation of WNT2 in primary gastric cancer and colorectal cancer. Int J Oncol 19(5):1003–1007

    CAS  PubMed  Google Scholar 

  42. Kirikoshi H, Sekihara H, Katoh M (2001) Expression profiles of 10 members of frizzled gene family in human gastric cancer. Int J Oncol 19(4):767–771

    CAS  PubMed  Google Scholar 

  43. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hammad MA, Azam SS (2015) Structural dynamics and inhibitor searching for Wnt-4 protein using comparative computational studies. Drug Des, Dev Therapy 9:2449

    Google Scholar 

  45. Kumar S, Žigman M, Patel TR, Trageser B, Gross JC, Rahm K, Boutros M, Gradl D, Steinbeisser H, Holstein T (2014) Molecular dissection of Wnt3a-Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity. BMC Biol 12(1):44

    PubMed  PubMed Central  Google Scholar 

  46. Agostino M, Pohl SÖ-G, Dharmarajan A (2017) Structure-based prediction of Wnt binding affinities for frizzled-type cysteine-rich domains. J Biol Chem 292(27):11218–11229

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Espadaler J, Querol E, Aviles FX, Oliva B (2006) Identification of function-associated loop motifs and application to protein function prediction. Bioinformatics 22(18):2237–2243

    CAS  PubMed  Google Scholar 

  48. Azam SS, Mirza AH (2014) Role of thumb index fold in Wnt-4 protein and its dynamics through a molecular dynamics simulation study. J Mol Liq 198:313–321

    CAS  Google Scholar 

  49. Gromiha MM, Selvaraj S (2004) Inter-residue interactions in protein folding and stability. Prog Biophys Mol Biol 86(2):235–277

    CAS  PubMed  Google Scholar 

  50. Kumar S (2014) Molecular dissection of mouse Wnt3a-Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity. PhD Thesis, University of Heidelberg

  51. Voronkov A, Baskin I, Palyulin V, Zefirov N (2007) Molecular modeling of the complex between the XWNT8 protein and the CRD domain of the MFZD8 receptor. Doklad Biochem Biophys 412: 8–11

  52. Ain QU, Seemab U, Rashid S, Nawaz MS, Kamal MA (2013) Prediction of structure of human Wnt-CRD (FZD) complex for computational drug repurposing. PLoS One 8(1):e54630

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fiser A (2010) Template-based protein structure modeling. Methods Mol Biol 673:73–94

Download references

Acknowledgments

This study was supported by the Semnan University of Medical Sciences (Grant Number: 810) and the Pasteur Institute of Iran (Grant Number: 94/0110/15866).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Akbari Eidgahi or Ladan Teimoori-Toolabi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalhor, H., Poorebrahim, M., Rahimi, H. et al. Structural and dynamic characterization of human Wnt2-Fzd7 complex using computational approaches. J Mol Model 24, 274 (2018). https://doi.org/10.1007/s00894-018-3788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3788-3

Keywords

Navigation