Skip to main content
Log in

Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To investigate and compare the differences of structures and properties of CL-20/TNT cocrystal and composite explosives, the CL-20/TNT cocrystal and composite models were established. Molecular dynamics simulations were performed to investigate the structures, mechanical properties, sensitivity, stabilities and detonation performance of cocrystal and composite models with COMPASS force field in NPT ensemble. The lattice parameters, mechanical properties, binding energies, interaction energy of trigger bond, cohesive energy density and detonation parameters were determined and compared. The results show that, compared with pure CL-20, the rigidity and stiffness of cocrystal and composite models decreased, while plastic properties and ductility increased, so mechanical properties can be effectively improved by adding TNT into CL-20 and the cocrystal model has better mechanical properties. The interaction energy of the trigger bond and the cohesive energy density is in the order of CL-20/TNT cocrystal > CL-20/TNT composite > pure CL-20, i.e., cocrystal model is less sensitive than CL-20 and the composite model, and has the best safety parameters. Binding energies show that the cocrystal model has higher intermolecular interaction energy values than the composite model, thus illustrating the better stability of the cocrystal model. Detonation parameters vary as CL-20 > cocrystal > composite, namely, the energy density and power of cocrystal and composite model are weakened; however, the CL-20/TNT cocrystal explosive still has desirable energy density and detonation performance. This results presented in this paper help offer some helpful guidance to better understand the mechanism of CL-20/TNT cocrystal explosives and provide some theoretical assistance for cocrystal explosive design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agrawal JP (1998) Recent trends in high-energy materials. Prog Energy Combust Sci 24:1–30

    Article  CAS  Google Scholar 

  2. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15

    Article  CAS  Google Scholar 

  3. Lara OF, Espinosa PG (2007) Cocrystals definitions. Supramol Chem 19:553–557

    Article  Google Scholar 

  4. Shan N, Zaworotko MJ (2008) The role of cocrystals in pharmaceutical science. Drug Discov Today 13:440–446

    Article  CAS  Google Scholar 

  5. Xu HF, Duan XH, Li HZ, Pei CH (2015) A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv 5:95764–95770

    Article  CAS  Google Scholar 

  6. Guo DZ, An Q, Goddard WA, Zybin SV, Huang FL (2014) Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. J Phys Chem C 118:30202–30208

    Article  CAS  Google Scholar 

  7. Wei CX, Huang H, Duan XH, Pei CH (2011) Structures and properties prediction of HMX/TATB co-crystal. Propellants Explos Pyrotech 36:416–423

    Article  CAS  Google Scholar 

  8. Liu K, Zhang G, Luan JY, Chen ZQ, Su PF, Shu YJ (2016) Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT. J Mol Struct 110:91–96

    Article  Google Scholar 

  9. Wu JT, Zhang JG, Li T, Li ZM, Zhang TL (2015) A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv 5:28354–28359

    Article  CAS  Google Scholar 

  10. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  11. Xiong SL, Chen SS, Jin SH (2017) Molecular dynamic simulations on TKX-50/RDX cocrystal. J Mol Graphics Modell 74:171–176

    Article  CAS  Google Scholar 

  12. Ding X, Gou RJ, Ren FD, Liu F, Zhang SH, Gao HF (2016) Molecular dynamics simulation and density functional theory insight into the cocrystal explosive of hexaazaisowurtzitane/nitroguanidine Int J Quantum Chem 116:88–96

    Article  CAS  Google Scholar 

  13. Song KP, Ren FD, Zhang SH, Shi WJ (2016) Theoretical insights into the stabilities, detonation performance, and electrostatic potentials of cocrystals containing α- or β-HMX and TATB, FOX-7, NTO, or DMF in various molar ratios. J Mol Model 22:249

    Article  Google Scholar 

  14. Feng RZ, Zhang SH, Ren FD, Gou RJ, Gao L (2016) Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential. J Mol Model 22:123

    Article  Google Scholar 

  15. Li YX, Chen SS, Ren FD (2015) Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies. J Mol Model 21:245

    Article  CAS  Google Scholar 

  16. Yang ZW, Zhang YL, Li HZ, Zhou XQ, Nie FD, Li JS, Huang H (2012) Preparation, structure and properties of CL-20/TNT cocrystal. Chin J Energ Mater 20:674–679

    CAS  Google Scholar 

  17. Yang ZW, Li HZ, Huang H, Zhou XQ, Li JS, Nie FD (2013) Preparation and performance of a HNIW/TNT cocrystal explosive. Propellants Explos Pyrotech 38:495–501

    Article  CAS  Google Scholar 

  18. Agrawal JP (2005) Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech 30:316–328

    Article  CAS  Google Scholar 

  19. Foltz MF, Coon CL, Garcia F (1994) The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, part I. Propellants Explos Pyrotech 19:19–25

    Article  CAS  Google Scholar 

  20. Zhao XQ, Shi NC (1995) Crystal structure of ε-hexanitrohexaazaisowurtzitane. Chin Sci Bull 40:2158–2160

    Google Scholar 

  21. Vrcelj RM, Sherwood JN, Kennedy AR, Gallagher HG, Gelbrich T (2003) Polymorphism in 2-4-6 trinitrotoluene. Cryst Growth Des 3:1027–1032

    Article  CAS  Google Scholar 

  22. Sun H, Ren PJ, Fried R (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246

    Article  CAS  Google Scholar 

  23. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS forcefield. J Chem Chem B 104:2477–2489

    Article  CAS  Google Scholar 

  24. Michael JM, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25:61–71

    Article  Google Scholar 

  25. Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843

    Article  CAS  Google Scholar 

  26. Pettifor DG (1992) Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol 8:345–349

    Article  CAS  Google Scholar 

  27. Wu JL (1993) Mechanics of elasticity. Tongji University Press, Shanghai,

    Google Scholar 

  28. Weiner JH (1983) Statistical mechanics of elasticity. Wiley, New York,

    Google Scholar 

  29. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006) Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs. J Phys Chem B 110:7203–7207

    Article  CAS  Google Scholar 

  30. Xu XJ, Xiao JJ, Huang H, Li JS, Xiao HM (2010) Molecular dynamic simulations on the structures and properties of ε-CL-20(0 0 1)/F2314 PBX. J Hazard Mater 175:423–428

    Article  CAS  Google Scholar 

  31. Zhu W, Xiao JJ, Zhu WH, Xiao HM (2009) Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives. J Hazard Mater 164:1082–1088

    Article  CAS  Google Scholar 

  32. Qiu L, Xiao HM (2009) Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs. J Hazard Mater 164:329–336

    Article  CAS  Google Scholar 

  33. Liu Q, Xiao JJ, Zhang J, Zhao F, He ZH, Xiao HM (2016) Molecular dynamics simulation on CL-20/TNT cocrystal explosive. Chem J Chin Univer 37:559–566

    CAS  Google Scholar 

  34. Politzer P, Murray JS (2015) Impact sensitivity and maximum heat of detonation. J Mol Model 21:262

    Article  Google Scholar 

  35. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  Google Scholar 

  36. Stephen AD, Kumarashas P, Pawar RB (2011) Charge density distribution, electrostatic properties, and impact sensitivity of the high energetic molecule TNB: a theoretical charge density study. Propellants Explos Pyrotech 36:168–174

    Article  CAS  Google Scholar 

  37. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible. Propellants Explos Pyrotech 41:414–425

    Article  CAS  Google Scholar 

  38. Zhu W, Wang XJ, Xiao JJ, Zhu WH, Sun H, Xiao HM (2009) Molecular dynamics simulations of AP/HMX composite with a modified force field. J Hazard Mater 167:810–816

    Article  CAS  Google Scholar 

  39. Xiao JJ, Li SY, Chen J, Ji GF, Zhu W, Zhao F, Wu Q, Xiao HM (2013) Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs. J Mol Model 19:803–809

    Article  CAS  Google Scholar 

  40. Xiao JJ, Wang WR, Chen J, Ji GF, Zhu W, Xiao HM (2012) Study on the relations of sensitivity with energy properties for HMX and HMX-based PBXs by molecular dynamics simulation. Physica B 407:3504–3509

    Article  CAS  Google Scholar 

  41. Sun T, Xiao JJ, Liu Q, Zhao F, Xiao HM (2014) Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J Mater Chem A 2:13898–13904

    Article  CAS  Google Scholar 

  42. Zhu W, Liu DM, Xiao JJ, Zhao XB, Zheng J, Zhao F, Xiao HM (2014) Molecular dynamics study on sensitivity criterion, thermal expansion and mechanical properties of multi-component high energy systems. Chin J Energ Mater 22:582–587

    CAS  Google Scholar 

  43. Liu DM, Zhao L, Xiao JJ, Chen J, Ji GF, Zhu W, Zhao F, Wu Q, Xiao HM (2013) Sensitivity criterion and mechanical properties prediction of HMX and RDX crystals at different temperatures-comparative studies with molecular dynamics simulation. Chem J Chin Univer 34:2558–2565

    CAS  Google Scholar 

  44. Xu XJ, Xiao HM, Ju XH, Gong XD (2005) Theoretical study on pyrolysis mechanism for ε-hexanitrohexaazaisowurtzitane. Chin J Org Chem 25:536–539

    CAS  Google Scholar 

  45. Geetha M, Nair UR, Sarwade DB, Gore GM, Asthana SN, Singh H (2003) Studies on CL-20: the most powerful high energy material. J Therm Anal Calorim 73:913–922

    Article  CAS  Google Scholar 

  46. Keshavarz MH (2012) A simple way to predict heats of detonation of energetic compounds only from their molecular structures. Propellants Explos Pyrotech 37:93–97

    Article  CAS  Google Scholar 

  47. Wu X (1985) Simple method for calculating detonation parameters of explosives. J Energ Mater 3:263–277

    Article  CAS  Google Scholar 

  48. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations I. A simple method for calculating detonation properties of C-H-N-O explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  49. Keshavarz MH, Motamedoshariati H, Moghayadnia R, Nazari HR, Azarniamehraban J (2009) A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I. J Hazard Mater 172:1218–1228

    Article  CAS  Google Scholar 

  50. Keshavarz MH (2005) A simple approach for determining detonation velocity of high explosive at any loading density. J Hazard Mater 121:31–36

    Article  CAS  Google Scholar 

  51. Politzer P, Murray JS (2014) Detonation product composition and detonation properties. Cent Eur J Energ Mater 11:459–474

    Google Scholar 

  52. Guo YX, Zhang HS (1983) Nitrogen equivalent coefficient and revised nitrogen equivalent coefficient equations for calculating detonation properties of explosives: detonation velocity of explosives. Explos Shock Waves 3:57–65

    Google Scholar 

  53. Wang YL, Yu WL (2011) Explosives, initiators and pyrotechnics. Northwestern Polytechnical University Press, Xi’an,

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-yun Hang.

Electronic supplementary material

ESM 1

(DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, Gy., Yu, Wl., Wang, T. et al. Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation. J Mol Model 23, 281 (2017). https://doi.org/10.1007/s00894-017-3455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3455-0

Keywords

Navigation