Skip to main content
Log in

First hyperpolarizability of cyclooctatetraene modulated by alkali and alkaline earth metals

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

An Erratum to this article was published on 04 October 2017

This article has been updated

Abstract

In the present investigation, the first hyperpolarizability of alkali and alkaline earth metal derivatives of cyclooctatetraene (COT) has been calculated using BHHLYP and CAM-B3LYP functional for 6-311++G(d,p), 6-311++G(3df,3pd), and aug-pc 2 basis sets. Introduction of Na/K atoms at the axial position of COT and Li, Na, K/Be, Mg, Ca metal atoms and cyanide groups at the equatorial sites leads to lager enhancement of first hyperpolarizability. The ring charge density can account for the variation of first hyperpolarizability. The two state model has been invoked to explain the variation of first hyperpolarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 04 October 2017

    The original version of this article unfortunately contained a mistake. Schemes I and II were missing. These important components are given below.

References

  1. Parasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  2. Marder SR, Kippelen B, Jen AK-Y, Peyghambarian N (1997) Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388:845–851

    Article  CAS  Google Scholar 

  3. Kurumida J, Yoo SJB (2012) Nonlinear optical signal processing in optical packet switching systems. IEEE J Sel Top Quantum Electron 18:978–987

    Article  CAS  Google Scholar 

  4. Shi Y, Zhang C, Bechtel JH, Dalton LR, Robinson BH, Steier WH (2000) Low (Sub–1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape. Science 288(5463):119–122

    Article  CAS  Google Scholar 

  5. Silly MG, Porres L, Mongin O, Chollet PA, Blanchard- Desce M (2003) Optical limiting in the red–NIR range with soluble two-photon absorbing molecules. Chem Phys Lett 379:74–80

    Article  CAS  Google Scholar 

  6. Chemla DS, Zyss J (1987) Nonlinear optical properties of organic molecules and crystals. Academic, New York, p 1

    Google Scholar 

  7. Dalton LR, Harper AW, Ghosn R, Steier WH, Ziari M, Fetterman H, Shi Y, Mustacich RV, Jen AKY, Shea KJ (1995) Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics. Chem Mater 7(6):1060–1081

    Article  CAS  Google Scholar 

  8. Roy RS, Nandi PK (2015) Exploring bridging effect on first hyperpolarizability. RSC Adv 5:103729–103738

    Article  CAS  Google Scholar 

  9. Huijts RA, Hesselink GLJ (1989) Length dependence of the second-order polarizability in conjugated organic molecules. Chem Phys Lett 156:209–212

    Article  CAS  Google Scholar 

  10. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., beta., and.gamma.) and bond length alternation. J Am Chem Soc 116(23):10703–10714

    Article  CAS  Google Scholar 

  11. Zhang X, Wu HQ, Xu HL, Sun SL, Su ZM (2015) Modulating the charge transfer of D–S–A molecules: structures and NLO properties. J Phys Chem A 119(4):767–773

    Article  CAS  Google Scholar 

  12. Lee MJA, Piao M, Jeong M-Y, Lee SH, Kang KM, Jeon S-J, Lim TG, Cho BR (2003) Novel azo octupoles with large first hyperpolarizabilities. J Mater Chem 13:1030–1037

    Article  CAS  Google Scholar 

  13. Muhammad S, Xu H-L, Zhong R-L, Su Z-M, Sehemi AGA, Irfan A (2013) Quantum chemical design of nonlinear optical materials by sp2-hybridized carbon nanomaterials: issues and opportunities. J Mater Chem C 1:5439–5449

    Article  CAS  Google Scholar 

  14. Csók Z, Sziraczki P, Kollár L, Ngo HM, Rak IL, Caturello NAMS, Albuquerque RQ (2015) Intramolecular cooperative effects in multichromophoric cavitands exhibiting nonlinear optical properties. J Phys Chem C 119(22):12608–12615

    Article  Google Scholar 

  15. Wu K, Snijders JG, Lin C (2002) Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters. J Phys Chem B 106(35):8954–8958

    Article  CAS  Google Scholar 

  16. Pilia L, Marinotto D, Pizzotti M, Tessore F, Robertson N (2016) High second-order NLO response exhibited by the first example of polymeric film incorporating a Diimine–Dithiolate square-planar complex: the [Ni(o-phen)(bdt)]. J Phys Chem C120(34):19286–19294

    Google Scholar 

  17. Maroulis G (2012) Quantifying the performance of conventional DFT methods on a class of difficult problems: the interaction (Hyper)polarizability of two water molecules as a test case. Int J Quantum Chem 112:2231–2241

    Article  CAS  Google Scholar 

  18. Chen W, Li Z-R, Wu D, Gu F-L, Hao X-Y, Wang B-Q, Li R-J, Sun C-C (2004) The static polarizability and first hyperpolarizability of the water trimer anion: ab initio study. J Chem Phys 121(21):10489–10494

    Article  CAS  Google Scholar 

  19. Wang JJ, Zhou ZJ, Bai Y, Liu ZB, Li Y, Wu D, Chen W, Li ZR, Sun CC (2012) The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: dramatic superalkali effect on the nonlinear optical property. J Mater Chem 22:9652–9657

    Article  CAS  Google Scholar 

  20. Champagne B, Spassova M, Jadin J-B, Kirtman B (2002) Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains. J Chem Phys 116:3935

    Article  CAS  Google Scholar 

  21. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole. J Am Chem Soc 127(31):10977–10981

    Article  CAS  Google Scholar 

  22. Wang FF, Li ZR, Wu D, Wang BQ, Li YZ, Li J, Chen W, Yu GT, Gu FL, Aoki Y (2008) Structures and considerable static first hyperpolarizabilities: new organic alkalides (M+@n6adz)M‘- (M, M‘= Li, Na, K; n = 2, 3) with cation inside and anion outside of the cage complexants. J Phys Chem B 112(4):1090–1094

    Article  CAS  Google Scholar 

  23. Mai J, Gong S, Nan L, Luo Q, Zhiru L (2015) A novel class of compounds—superalkalides:M+(en)3M3 /O (M, M0 = Li, Na, and K; en = ethylenediamine)—with excellent nonlinear optical properties and high stabilities Phys. Chem Chem Phys 17:28754–28764

    Article  CAS  Google Scholar 

  24. Muhammad S, Xu H, Liao Y, Kan Y, Su Z (2009) Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131(33):11833–11840

    Article  CAS  Google Scholar 

  25. Hatua K, Nandi PK (2015) Diradical character and second hyperpolarizability of multidecker inverse sandwich complexes of Mg and Ca. Chem Phys Lett 628:1–8

    Article  CAS  Google Scholar 

  26. Hatua K, Nandi PK (2013) Beryllium-cyclobutadiene multidecker inverse sandwiches: electronic structure and second-hyperpolarizability. J Phys Chem A 117(47):12581–12589

    Article  CAS  Google Scholar 

  27. Fray GI, Saxton RG (1978) The chemistry of cyclooctatetraene and its derivatives. Cambridge University Press, New York

    Google Scholar 

  28. Feixas F, Matito E, Sola M, Poater J (2008) Analysis of Hückel’s [4n + 2] rule through electronic delocalization measures. J Phys Chem A 112(50):13231–13238

    Article  CAS  Google Scholar 

  29. Cao T, Ma Y, Yan X, Cheng J, Luo Y, He L, Zhu W (2009) Is free cyclooctatetraene dianion an aromatic system? a quantum chemistry study. J Chem 27:1914–1918

    CAS  Google Scholar 

  30. Hrovat DA, Borden WT (1992) CASSCF calculations find that a D8h geometry is the transition state for double bond shifting in cyclooctatetraene. 114 (14):5879–5881

  31. Jones M Jr (2000) Organic chemistry. Norton, New York

    Google Scholar 

  32. Sokolov AY, Magers DB, Wu JI, Allen WD, Schleyer PR, Schaefer HF (2013) Free cyclooctatetraene dianion: planarity, aromaticity, and theoretical challenges. J Chem Theory Comput 9(10):4436–4443

    Article  CAS  Google Scholar 

  33. Katz TJ (1960) The Cycloöctatetraenyl Dianion. J Am Chem Soc 82(14):3784–3785

    Article  CAS  Google Scholar 

  34. Wayda AL, Ginsberg AP (1990) Inorganic synthesis, 27th edn. Wiley, New York, p 150

    Book  Google Scholar 

  35. Harriman KLM, Murugesu M (2016) An organolanthanide building block approach to single-molecule magnets. Acc Chem Res 49(6):1158–1167

    Article  CAS  Google Scholar 

  36. Hernández DP, López JAM, Pérez RA (2011) Bonding nature and electron delocalization of An(COT)2, An = Th, Pa, U. J Phys Chem A 115(32):8997–9003

    Article  Google Scholar 

  37. Nakajo E, Masuda T, Yabushita S (2016) Theoretical study on the photoelectron spectra of Ln(COT)2 : lanthanide dependence of the metal-ligand interaction. J Phys Chem A. doi:10.1021/acs.jpca.6b10930

    Google Scholar 

  38. Yanai T, Tew D, Handy N (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson A (2009) Gaussian 09, revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  40. Becke AD (1993) A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  41. Limacher PA, Mikkelsen KV, Lüthi HP (2009) On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. J Chem Phys 130:194114

    Article  Google Scholar 

  42. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318

    Article  CAS  Google Scholar 

Download references

Acknowledgements

(RSR) acknowledges the UGC BSR (F.7-223/2009 (BSR) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta K. Nandi.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s00894-017-3466-x.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R.S., Mondal, A. & Nandi, P.K. First hyperpolarizability of cyclooctatetraene modulated by alkali and alkaline earth metals. J Mol Model 23, 93 (2017). https://doi.org/10.1007/s00894-017-3273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3273-4

Keywords

Navigation