Skip to main content
Log in

Theoretical study of the spectroscopic and nonlinear optical properties of trans- and cis-4-hydroxyazobenzene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We investigate the molecular structure, vibrational and electronic absorption spectra, and electronic hyperpolarizabilities of trans and cis isomers of 4-hydroxyazobenzene (HOAB) via density functional theory. Results show that the azo dye exhibits a high third-order nonlinear optical response and good optical transparency. Both the basis set and the functional are important influences on the results obtained when calculating the absorption spectrum and NLO response. We also study the effect of the solvent on the electronic absorption spectrum to assess the ability of the functional to reproduce the experimental spectrum in combination with a suitable solvent model. Our calculations show that the SMD model of Truhlar et al. handles the electrostatic and the non-electrostatic effects of hydrogen-bonding solvents on the absorption spectrum better than the traditional polarizable continuum model does. In addition, our results indicate that the dye trans-HOAB exhibits a high second hyperpolarizability and excellent optical transparency. Also, although the second hyperpolarizability of cis-HOAB is much lower than that of trans-HOAB, it is non-negligible when calculating the optical nonlinearity of HOAB under an optical pump. We also examine the effect of frequency dispersion on second harmonic generation. This study provides the basis for further research on the spectroscopic and nonlinear optical properties of novel azo dyes and other π-conjugated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3a–b
Fig. 4a–b
Fig. 5a–b
Fig. 6a–b

Similar content being viewed by others

References

  1. Galvan-Gonzalez A, Canva M, Stegeman GI, Sukhomlinova L, Twieg RJ, Chan KP, Kowalczyk TC, Lackritz HS (2000) J Opt Soc Am B 17:1992

    Article  CAS  Google Scholar 

  2. Zhang CZ, Zhu J, Yang H, Lu CG, Lu GY, Cui YP (2008) Dye Pigment 76:765

    Article  CAS  Google Scholar 

  3. He TC, Wang CS, Pan X, Zhang CZ, Lu GY (2009) Appl Phys B 94:653

    Article  CAS  Google Scholar 

  4. Zeng Y, Pan ZH, Zhao FL, Qin M, Zhou Y, Wang CS (2014) Chin Phys B 23:024212

    Article  Google Scholar 

  5. Chao TY, Chang HL, Su WC, Wu JY, Jeng RJ (2008) Dye Pigment 77:515

    Article  CAS  Google Scholar 

  6. Li Z, Qin AJ, Lam JWY, Dong YP, Dong YQ, Ye C, Williams ID, Tang BZ (2006) Macromolecules 39:1436

    Article  CAS  Google Scholar 

  7. Minisini B, Fayet G, Tsobnang F, Bardeau JF (2007) J Mol Model 13:1227 (and references therein)

  8. Tsuji T, Takashima H, Takeuchi H, Egawa T, Konaka S (2001) J Phys Chem A 105:9347

    Article  CAS  Google Scholar 

  9. Chen PC, Chieh YC, Wu JC (2003) J Mol Struct (Theochem) 624:191

    Article  CAS  Google Scholar 

  10. Kojima M, Nebashi S, Ogawa K, Kurita N (2005) J Phys Org Chem 18:994

    Article  CAS  Google Scholar 

  11. Harada J, Ogawa K, Tomoda D (1997) Acta Crystallogr B 53:662

    Article  Google Scholar 

  12. Wu P, Ding YS, Liu ZG, Li WH, Wei QL, Xiong XY (2012) Tianjin Chem Ind 26:22

    Google Scholar 

  13. Cai ZB, Zhou M, Gao JR (2009) Chin J Lasers 36:972

    Article  CAS  Google Scholar 

  14. Han K, Li HP, Wu YX, Tang G, Li MX, Zhong Q, Huang ZM (2009) J Mol Struct (Theochem) 908:69

    Article  CAS  Google Scholar 

  15. Li HP, Han K, Shen XP, Lu ZP, Huang ZM, Zhang WT, Zhang ZH, Bai L (2006) J Mol Struct (Theochem) 767:113

    Article  CAS  Google Scholar 

  16. Li HP, Han K, Tang G, Li MX, Shen XP, Huang ZM (2009) Mol Phys 107:1597

    Article  CAS  Google Scholar 

  17. Li MX, Han K, Li HP, Ge Y, Wu QH, Tang G, Wu YX (2010) J Mol Struct (Theochem) 957:31

    Article  CAS  Google Scholar 

  18. Li HP, Shen XP, Han K, Tang G (2014) J Mol Model 20:2126

    Article  Google Scholar 

  19. Li H, Xu H, Shen XP, Han K, Bi ZT, Xu RF (2016) Sci Rep 6:28067

    Article  CAS  Google Scholar 

  20. Åstrand PO, Ramanujam PS, Hvilsted S, Bak KL, Sauer SPA (2000) J Am Chem Soc 122:2482

    Article  Google Scholar 

  21. Li HP, Shen XP, Han K, Tang G, Zhang ZH (2013) Comput Theor Chem 1023:95

    Article  CAS  Google Scholar 

  22. Martell JM, Goddard JD, Eriksson LA (1997) J Phys Chem A 101:1927

    Article  CAS  Google Scholar 

  23. Reiher M, Liégeois V, Ruud K (2005) J Phys Chem A 109:7567

    Article  CAS  Google Scholar 

  24. Ségerie A, Lin LL, Liégeois V, Luo Y, Champagne B (2014) Spectrochim Acta A 119:34

    Article  Google Scholar 

  25. Martinez A, Otto P, Ladik J (2003) Int J Quantum Chem 94:251

    Article  CAS  Google Scholar 

  26. Sophy KB, Calaminici P, Pal S (2007) J Chem Theory Comput 3:716

    Article  CAS  Google Scholar 

  27. Kurtz H, Stewart J, Dieter K (1990) J Comput Chem 11:82

    Article  CAS  Google Scholar 

  28. Zalésny R, Bulik IW, Bartkowiak W, Luis JM, Avramopoulos A, Papadopoulos MG, Krawczyk P (2010) J Chem Phys 133:244308

    Article  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB et al (2010) GAUSSIAN 09, revision C.01. Gaussian, Inc., Wallingford

  30. Tekin N, Pir H, Sagdinc S (2012) Spectrochim Acta A 98:122

    Article  CAS  Google Scholar 

  31. Polat T (2014) J Mol Struct 1067:261

    Article  CAS  Google Scholar 

  32. NIST (2016) Computational Chemistry Comparison and Benchmark DataBase: precomputed vibrational scaling factors. http://cccbdb.nist.gov/vibscale.asp.

  33. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  34. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  CAS  Google Scholar 

  35. Liu Q, Qiu L, Wang Y, Lv G, Liu G, Wang S, Lin J (2016) J Mol Model 22:84

    Article  CAS  Google Scholar 

  36. Sanchez-Bojorge NA, Rodriguez-Valdez LM, Glossman-Mitnik D, Flores-Holguin N (2015) Comput Theor Chem 1067:129 (and references therein)

  37. Marenich V, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  38. Vila FD, Strubbe DA, Takimoto Y, Andrade X, Rubio A, Louie SG, Rehr JJ (2010) J Chem Phys 133:034111

    Article  Google Scholar 

  39. Shan J, Yang P, Liu LY, Xu L (2009) Chem Phys 362:109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 11504418), the Natural Science Foundation of Jiangsu Province (grant nos. 16KJB460022, BK20140197), and the Fundamental Research Funds for the Central Universities of China (grant nos. 2015XKMS070, 2015XKMS075). We are grateful to the Advanced Analysis and Computation Center of China University of Mining and Technology for awarding us the CPU hours needed to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Peng Li or Kui Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HP., Bi, ZT., Fu, WY. et al. Theoretical study of the spectroscopic and nonlinear optical properties of trans- and cis-4-hydroxyazobenzene. J Mol Model 23, 79 (2017). https://doi.org/10.1007/s00894-017-3267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3267-2

Keywords

Navigation