Skip to main content
Log in

Quantum mechanical treatment of As3+-thiol model compounds: implication for the core structure of As(III)-metallothionein

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Exposure to inorganic arsenic (As) is one of the major health concerns in several regions around the world. Binding of As(III) with thiols is central to the mechanisms related to its toxicity, detoxification, and therapeutic effects. Due to its high thiol content, metallothionein (MT) is presumed to play an important role in case of arsenic toxicity. Consequences of these As-thiol interactions are not yet clear due to various difficulties in the characterization of arsenic bound proteins by spectroscopic techniques. Computational modeling can be a reliable approach in predicting the molecular structures of such complexes. This paper presents the results of a systematic study on different As(III)-thiol model compounds conducted by both ab initio and DFT methods with different Gaussian type basis sets. Proficiency of these theoretical methods has been evaluated in terms of bond lengths, bond angles, free energy, partial atomic charges, computational cost, and comparison with the experimental data. It has been demonstrated that the DFT-B3LYP/6-311+G(3df) functional offers better accuracy in predicting the structure and the UV absorption spectra of As(III)-thiol complexes. The results of the present study also helps in defining the boundaries for the core of arsenic bound MT so that quantum mechanical/molecular mechanical (QM/MM) methods can be employed to predict the structural and functional aspects of the protein.

Optimized structural parameters of As3+-thiol model compounds

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen S, Li XF, Cullen WR, Weinfeld M, Le Chris X (2013) Arsenic binding to proteins. Chem Rev 113(10):7769–7792

    Article  CAS  Google Scholar 

  2. Flora SJS (2011) Arsenic-induced oxidative stress and its reversibility. Free Radical Biol Med 51:257–281

    Article  CAS  Google Scholar 

  3. de The H, Bras ML, Lallemand-Breitenbach V (2012) Acute promyelocytic leukemia, arsenic, and PML bodies. J Cell Biol 198:11–21

    Article  Google Scholar 

  4. Bell SG, Vallee BL (2009) The metallothionein/thionein system: an oxidoreductive metabolic zinc link. Chembiochem 5:55–62

    Article  Google Scholar 

  5. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The Role of Metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066

    Article  CAS  Google Scholar 

  6. Albores A, Koropatnick J, Cherian MG, Zelazowski AJ (1992) Arsenic induces and enhances rat hepatic metallothionein production in vivo. Chem Biol Interact 85:127–140

    Article  CAS  Google Scholar 

  7. Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderon-Aranda ES, Manno M, Albores A (2001) Stress proteins induced by arsenic. Toxicol Appl Pharmacolol 177:132–148

    Article  Google Scholar 

  8. He X, Ma Q (2009) Induction of metallothionein I by arsenic via metal-activated transcription factor 1: critical role of c-terminal cysteine residues in arsenic sensing. J Biol Chem 284:12609–12621

    Article  CAS  Google Scholar 

  9. Ngu TT, Easton A, Stillman MJ (2008) Kinetic analysis of Arsenic-Metalation of human metallothionein: significance of two-domain structure. J Am Chem Soc 130:17016–17028

    Article  CAS  Google Scholar 

  10. Garla R, Mohanty BP, Ganger R, Sudarshan M, Bansal MP, Garg ML (2013) Metal stoichiometry of isolated and arsenic substituted metallothionein: PIXE and ESI-MS study. Biometals 26:887–896

    Article  CAS  Google Scholar 

  11. Li H, Otvos JD (1998) Biphasic kinetics of Zn2+ removal from Zn metallothionein by nitrilotriacetate are associated with differential reactivity of the two metal clusters. J Inorg Biochem 70:187–194

    Article  CAS  Google Scholar 

  12. Jensen KP, Rykaer M (2010) Metallothionein Zn2+- and Cu2+-clusters from first-principles calculations. Dalton Trans 39:9684–9695

    Article  CAS  Google Scholar 

  13. Bowers GM, Kirkpatrick RJ (2007) High-field 75As NMR study of arsenic oxysalts. J Magn Reson 188:311–321

    Article  CAS  Google Scholar 

  14. Cotelesage JJH, Pushie MJ, Grochulski P, Pickering IJ, George GN (2012) Metalloprotein active site structure determination: synergy between X-ray absorption spectroscopy and X-ray crystallography. J Inorg Biochem 115:127–137

    Article  CAS  Google Scholar 

  15. He Y, Bin Y, Liang Y, Xiang J (2012) Density functional investigation of the molecular structures, vibrational and absorption spectra of metal thiolate complexes, M(SC6H5)3 (M = As, Sb or Bi). Computat Theoret Chemist 994:91–96

    Article  CAS  Google Scholar 

  16. Rosen BP, Ajees AA, McDermott TR (2011) Life and death with arsenic. Bioessays 33:350–357

    Article  CAS  Google Scholar 

  17. Iyer RG, Kanatzidis MG (2004) [Mn2(AsS4)4]8- and [Cd2(AsS4)2(AsS5)2]8-: discrete clusters with high negative charge from alkali metal polythioarsenate fluxes. Inorg Chem 43:3656–3662

    Article  CAS  Google Scholar 

  18. Kepp KP (2012) Full quantum-mechanical structure of the human protein metallothionein-2. J Inorg Biochem 107:15–24

    Article  CAS  Google Scholar 

  19. Dalosto SD (2007) Computer simulation of the interaction of Cu(I) with Cys residues at the binding site of the yeast metallochaperone Cu(I)-Atx1. J Phys Chem B 111:2932–2940

    Article  CAS  Google Scholar 

  20. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int 48:1198–1229

    Article  CAS  Google Scholar 

  21. da Hora GCA, Longo RL, da Silva JBP (2012) Calculations of structures and reaction energy profiles of As2O3 and As4O6 species by quantum chemical methods. Internat J Quant Chemist 112:3320–3324

    Article  Google Scholar 

  22. Bai X, Zhang Q, Yang J, Ning H (2012) Probing the electronic structures and properties of neutral and charged monomethylated arsenic species (CH3Asn(−1,0,+1), n = 1–7) using Gaussian-3 theory. J Phys Chem A 116:9382–9390

    Article  CAS  Google Scholar 

  23. Teixeira MC, Ciminelli VST, Dantas MSS, Diniz SF, Duarte HA (2007) Raman spectroscopy and DFT calculations of As(III) complexation with a cysteine-rich biomaterial. J Colloid Interface Sci 315:128–134

    Article  CAS  Google Scholar 

  24. Zhang L, Pickering IJ, Winge DR, George GN (2008) X-ray absorption spectroscopy of cuprous-thiolate clusters in Saccharomyces cerevisiae metallothionein. Chem Biodivers 5:2042–2049

    Article  CAS  Google Scholar 

  25. Luber S, Reiher M (2010) Theoretical Raman optical activity study of the B domain of rat metallothionein. J Phys Chem B 114:1057–1063

    Article  CAS  Google Scholar 

  26. Curtiss LA, Raghavachari K, Redfern PC, Kedziora GS, Pople JA (2001) On comparison of experimental thermochemical data with G3 theory. J Chem Phys 114:9287–9295

    Article  CAS  Google Scholar 

  27. Riley KE, Op’t Holt BT, Merz KM Jr (2007) Critical assessment of the performance of density functional methods for several atomic and molecular properties. J Chem Theory Comput 3:407–433

    Article  CAS  Google Scholar 

  28. Gorelsky SI (2010) SWizard program, Revision 4.6, University of Ottawa, Canada

  29. Gorelsky SI, Lever ABP (2001) Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J Organomet Chem 635:187–196

    Article  CAS  Google Scholar 

  30. Scott N, Hatlelid KM, MacKenzie NE, Carter DE (1993) Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 6:102–106

    Article  CAS  Google Scholar 

  31. Bruschi M, Fantucci P, De Gioia L (2002) DFT investigation of structural, electronic, and catalytic properties of diiron complexes related to the [2Fe]H subcluster of Fe-only hydrogenases. Inorg Chem 41:1421–1429

    Article  CAS  Google Scholar 

  32. Harris TK, Turner GJ (2002) Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. IUBMB Life 53:85–98

    Article  CAS  Google Scholar 

  33. Rey NA, Howarth OW, Pereira-Maia EC (2004) Equilibrium characterization of the As(III)-cysteine and the As(III)-glutathione systems in aqueous solution. J Inorgan Biochem 98:1151–1159

    Article  CAS  Google Scholar 

  34. He Y, Chen S, Liu Y, Liang Y, Xiang J, Wu D, Zhou F (2012) Coordination of Bi3+ to metal-free metallothionein: spectroscopy and density functional calculation of structure, coordination, and electronic excitations. J Inorgan Biochem 113:9–14

    Article  CAS  Google Scholar 

  35. Whitfield HJ (1970) The crystal structure of tetra-arsenic trisulphide. J Chem Soc (A) 1800-1803

  36. Shaikh TA, Bakus RC II, Parkin S, Atwood DA (2006) Structural characteristics of 2-halo-1,3,2-dithiarsenic compounds and tris-(pentafluorophenylthio)-arsen. J Organomet Chem 691:1825–1833

    Article  CAS  Google Scholar 

  37. Sub E (2011) Investigations towards a better understanding of arsenic-sulfur speciation in aquatic environments: formation, stability, structural characterization, and conflicting analyses. Dissertation, Bayreuth University

  38. Webb SM, Gaillard JF, Ma LQ, Tu C (2003) XAS speciation of arsenic in a hyper-accumulating fern. Environ Sci Technol 37:754–760

    Article  CAS  Google Scholar 

  39. Touw DS, Nordman CE, Stuckey JA, Pecoraro VL (2007) Identifying important structural characteristics of arsenic resistance proteins by using designed three-stranded coiled coils. PNAS 104:11969–11974

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by University Grant Commission (UGC), New Delhi, India vide grant no. F. No. 37-317/2009 (SR). Department of Science and Technology, New Delhi, India is gratefully acknowledged for providing the workstation facility at Department of Biophysics, Panjab University, Chandigarh under the DST-FIST grant. R.G. is thankful to UGC for providing financial assistance in the form of Junior/Senior Research Fellowship. B.P.M. thankfully acknowledges the financial assistance provided by Indian Council Medical Research, India in the form of Research Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biraja Prasad Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garla, R., Kaur, N., Bansal, M.P. et al. Quantum mechanical treatment of As3+-thiol model compounds: implication for the core structure of As(III)-metallothionein. J Mol Model 23, 78 (2017). https://doi.org/10.1007/s00894-017-3247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3247-6

Keywords

Navigation