Skip to main content
Log in

Probing the influence of carboxyalkyl groups on the molecular flexibility and the charge density of apigenin derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Apigenin is an important flavonoids due to its antidiabetic bioactivity. It was reported experimentally that the 7-substituent derivative of apigenin has higher biological activity than 4′- and 5-substituted derivatives while introducing sole carboxyalkyl group -(CH2)7COOH into the parent structure. Molecular docking studies indicated that the other two derivatives have lower binding affinities than the 7-substituent derivative (-7.52 kcal mol−1), which is considered to be a better inhibitor than the parent molecule. Almost all of the carbon atoms and oxygen atoms are coplaner for all three molecules in solution phase, however, all carboxyalkyl groups bend inside into the parent molecules in the active site, and the jagged geometries of the carbon chains are destroyed correspondingly. In addition, most of the electron densities of the chemical bonds for all molecules are decreased, especially the 7-substituent derivative. In contrast, most of the Laplacian values for three molecules are increased in the active site, which suggests that the charge densities at the bond critical point (bcp) are much more depleted than the solution phase. Dipole moments of derivatives are all increased in the active site, suggesting strong intermolecular interactions. After interacting with the S. cerevisiae α-glucosidase, only the 7-substituent derivative has the lowest energy gap ΔE HOMO-LUMO, which indicates the lowest stability and the highest inhibition activity.

Probing the influence of carboxyalkyl groups on the molecular flexibility and the charge density of apigenin derivatives

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Israili HZ (2011) Advances in the treatment of type 2 diabetes mellitus. Am J Ther 18:117–152. doi:10.1097/MJT.0b013e3181afbf51

    Article  Google Scholar 

  2. Bischoff H (1995) The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Invest Med 18(4):303–311

    CAS  Google Scholar 

  3. Qaseem A, Humphrey LL, Sweet DE, Starkey M, Shekelle P (2012) Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann Intern Med 156:218–231. doi:10.7326/0003-4819-156-3-201202070-00011

    Article  Google Scholar 

  4. Moorthy NS, Ramos MJ, Fernandes PA (2012) Studies on α-glucosidase inhibitors development: Magic molecules for the treatment of carbohydrate mediated diseases. Mini-Rev Med Chem 12:713–720. doi:10.2174/138955712801264837

    Article  CAS  Google Scholar 

  5. Maltarollo VG, Homem-de-Mello P, Honório KM (2010) Theoretical study on the molecular and electronic properties of some substances used for diabetes mellitus treatment. J Mol Model 16(4):799–804. doi:10.1007/s00894-009-0627-6

    Article  CAS  Google Scholar 

  6. Kalra S (2014) Alpha glucosidase inhibitors. J Pak Med Assoc 64:474–476

    Google Scholar 

  7. Etxeberria U, de la Garza AL, Campión J, Martínez JA, Milagro FI (2012) Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Targets 16:269–297. doi:10.1517/14728222.2012.664134

    Article  CAS  Google Scholar 

  8. Mokale SN, Palkar AD, Dube PN, Sakle NS, Miniyar PB (2016) Design, synthesis and in vivo screening of some novel quinazoline analogs as anti-hyperlipidemic and hypoglycemic agents. Bioorg Med Chem Lett 26:272–276. doi:10.1016/j.bmcl.2015.12.037

    Article  CAS  Google Scholar 

  9. Sakkiah S, Thangapandian S, Lee KW (2012) Pharmacophore modeling, molecular docking, and molecular dynamics simulation approaches for identifying new lead compounds for inhibiting aldose reductase 2. J Mol Model 18(7):3267–3282. doi:10.1007/s00894-011-1247-5

    Article  CAS  Google Scholar 

  10. Kumar S, Narwal S, Kumar V, Prakash O (2011) α-glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 5(9):19–29. doi:10.4103/0973-7847.79096

    Article  CAS  Google Scholar 

  11. Bibi S, Sakata K (2016) Current status of computer-aided drug design for type 2 diabetes. Curr Comput Aided Drug Des. doi:10.2174/1573409912666160426120709

    Google Scholar 

  12. de Assis TM, Gajo GC, de Assis LC, Garcia LS, Silva DR, Ramalho TC, da Cunha EF (2016) QSAR models guided by molecular dynamics applied to human glucokinase activators. Chem Biol Drug Des 87:455–466. doi:10.1111/cbdd.12683

    Article  Google Scholar 

  13. Yan J, Zhang G, Pan J, Wang Y (2014) α-Glucosidase inhibition by luteolin: kinetics, interaction and molecular docking. Int J Biol Macromol 64:213–223. doi:10.1016/j.ijbiomac.2013.12.007

    Article  CAS  Google Scholar 

  14. Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138:2099–2107. doi:10.1016/j.foodchem.2012.11.139

    Article  CAS  Google Scholar 

  15. Jin Q, Yang J, Ma L, Cai J, Li J (2015) Comparison of polyphenol profile and inhibitory activities against oxidation and α-glucosidase in mulberry (genus Morus) cultivars from China. J Food Sci 80(11):C2440–2451. doi:10.1111/1750-3841.13099

    Article  CAS  Google Scholar 

  16. Na B, Nguyen PH, Zhao BT, Vo QH, Min BS, Woo MH (2016) Protein tyrosine phosphatase 1B (PTP1B) inhibitory activity and glucosidase inhibitory activity of compounds isolated from Agrimonia pilosa. Pharm Biol 54(3):474–480. doi:10.3109/13880209.2015.1048372

    Article  CAS  Google Scholar 

  17. Li H, Song F, Xing J, Tsao R, Liu Z, Liu S (2009) Screening and structural characterization of alpha-glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MS(n) and SORI-CID FTICR MS. J Am Soc Mass Spectrom 20(8):1496–1503. doi:10.1016/j.jasms.2009.04.003

    Article  CAS  Google Scholar 

  18. Zhang J, Liu D, Huang Y, Gao Y, Qian S (2012) Biopharmaceutics classification and intestinal absorption study of apigenin. Int J Pharm 436(1-2):311–317. doi:10.1016/j.ijpharm.2012.07.002

    Article  CAS  Google Scholar 

  19. Zhang L, Zuo Z, Lin G (2007) Intestinal and hepatic glucuronidation of flavonoids. Mol Pharm 4(6):833–845. doi:10.1021/mp700077z

    Article  CAS  Google Scholar 

  20. Sroka Z, Żbikowska B, Hładyszowski J (2015) The antiradical activity of some selected flavones and flavonols. Experimental and quantum mechanical study. J Mol Model 12:307. doi:10.1007/s00894-015-2848-1

    Article  Google Scholar 

  21. Kim MK, Park KS, Lee C, Park HR, Choo H, Chong Y (2010) Enhanced stability and intracellular accumulation of quercetin by protection of the chemically or metabolically susceptible hydroxyl groups with a pivaloxymethyl (POM) promoiety. J Med Chem 53(24):8597–8607. doi:10.1021/jm101252m

    Article  CAS  Google Scholar 

  22. Wen X, Walle T (2006) Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab Dispos 34(10):1786–1792. doi:10.1124/dmd.106.011122

    Article  CAS  Google Scholar 

  23. Su ZR, Fan SY, Shi WG, Zhong BH (2015) Discovery of xanthine oxidase inhibitors and/or α-glucosidase inhibitors by carboxyalkyl derivatization based on the flavonoid of apigenin. Bioorg Med Chem Lett 5(14):2778–2781. doi:10.1016/j.bmcl.2015.05.016

    Article  Google Scholar 

  24. Raghavachari K, Saha A (2015) Accurate Composite and Fragment-Based Quantum Chemical Models for Large Molecules. Chem Rev 115(12):5643–5677. doi:10.1021/cr500606e

    Article  CAS  Google Scholar 

  25. Liu J, Zhu T, Wang X, He X, Zhang JZ (2015) Quantum fragment based ab initio molecular dynamics for proteins. J Chem Theory Comput 11(12):5897–5905. doi:10.1021/acs.jctc.5b00558

    Article  CAS  Google Scholar 

  26. da Silva Gonçalves A, França TC, Caetano MS, Ramalho TC (2014) Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: reducing the computational cost in hybrid QM/MM methods. J Biomol Struct Dyn 32:301–307. doi:10.1080/07391102.2013.765361

    Article  Google Scholar 

  27. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford, U.K

    Google Scholar 

  28. Guisasola EEB, Gutierrez LJ, Salcedo RE, Garibotto FM, Andujar SA, Enriz RD, Rodriguez AM (2016) Conformational transition of A beta(42) inhibited by a mimetic peptide. A molecular modeling study using QM/MM calculations and QTAIM analysis. Comput Theor Chem 1080:56–65. doi:10.1016/j.comptc.2016.02.002

    Article  Google Scholar 

  29. de Ruyck J, Brysbaert G, Blossey R, Lensink MF (2016) Lensink, Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 9:1–11. doi:10.2147/AABC.S105289

    Google Scholar 

  30. Singh RN, Baboo V, Rawat P, Kumar A, Verma (2012) Molecular structure, spectral studies, intra and intermolecular interactions analyses in a novel ethyl 4-[3-(2-chloro-phenyl)-acryloyl] -3,5-dimethyl-1H-pyrrole-2-carboxylate and its dimer: a combined DFT and AIM approach. Spectrochim Acta A Mol Biomol Spectrosc 94:288–301. doi:10.1016/j.saa.2012.03.059

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ,Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, revision E.01 (2009) Gaussian Inc., Wallingford

  32. Espinoza-Hicks JC, Nápoles-Duarte JM, Nevárez-Moorillón GV, Camacho-Dávila A, Rodríguez-Valdez LM (2016) Synthesis, electronic, and spectral properties of novel geranylated chalcone derivatives: a theoretical and experimental study. J Mol Model 22(10):253. doi:10.1007/s00894-016-3114-x

    Article  CAS  Google Scholar 

  33. Mohamed TA, Soliman UA, Shaaban IA, Zoghaib WM, Wilson LD (2015) Raman, infrared and NMR spectral analysis, normal coordinate analysis and theoretical calculations of 5-(methylthio)-1,3,4-thiadiazole- 2(3H)-thione and its thiol tautomer. Spectrochim Acta A Mol Biomol Spectrosc 150:339–349. doi:10.1016/j.saa.2015.05.039

    Article  CAS  Google Scholar 

  34. Muñoz MA, Joseph-Nathan P (2009) DFT-GIAO 1H and 13C NMR prediction of chemical shifts for the configurational assignment of 6beta-hydroxyhyoscyamine diastereoisomers. Magn Reson Chem 47(7):578–584. doi:10.1002/mrc.2432

    Article  Google Scholar 

  35. Tomasi J, Mennucci B (2005) Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093. doi:10.1021/cr9904009

    Article  CAS  Google Scholar 

  36. Delgado A, Corni S, Pittalis S, Rozzi CA (2015) Modeling solvation effects in real-space and real-time within density functional approaches. J Chem Phys 143(14):144111. doi:10.1063/1.4932593

    Article  Google Scholar 

  37. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592. doi:10.1002/jcc.22885

    Article  Google Scholar 

  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791. doi:10.1002/jcc.21256

    Article  Google Scholar 

  39. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392. doi:10.1007/978-1-60761-977-2_3

    Article  CAS  Google Scholar 

  40. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201. doi:10.1093/bioinformatics/bti770

    Article  CAS  Google Scholar 

  41. van Bochove MA, Swart M, Bickelhaupt FM (2007) Nucleophilic substitution at phosphorus centers (SN2@P). ChemPhysChem 8:2452–2463. doi:10.1002/cphc.200700488

    Article  Google Scholar 

  42. van Bochove MA, Bickelhaupt FM (2008) Nucleophilic substitution at C, Si and P: how solvation affects the shape of reaction profiles. Eur J Org Chem 4:649–654. doi:10.1002/ejoc.200700953

    Article  Google Scholar 

  43. van Bochove MA, Swart M, Bickelhaupt FM (2009) Stepwise walden inversion in nucleophilic substitution at phosphorus. Phys Chem Chem Phys 11:259–267. doi:10.1039/b813152j

    Article  Google Scholar 

  44. de Lima WEA, Pereira AF, de Castro AA, da Cunha EFF, Ramalho TC (2016) Flexibility in the molecular design of acetylcholinesterase reactivators: probing representative conformations by chemometric techniques and docking/QM calculations. Lett Drug Des Discov 13:360–371. doi:10.2174/1570180812666150918191550

    Article  Google Scholar 

  45. Kessler J, Dračínský M, Bouř P (2013) Parallel variable selection of molecular dynamics clusters as a tool for calculation of spectroscopic properties. J Comp Chem 34:366–371. doi:10.1002/jcc.23143

    Article  CAS  Google Scholar 

  46. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 6:559–572

    Article  Google Scholar 

  47. Imran S, Taha M, Ismail NH, Kashif SM, Rahim F, Jamil W, Hariono M, Yusuf M, Wahab H (2015) Synthesis of novel flavone hydrazones: in-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Eur J Med Chem 105:156–170. doi:10.1016/j.ejmech.2015.10.017

    Article  CAS  Google Scholar 

  48. Qi YJ, Zhao YM, Lu HN, Wang XE, Jin NZ (2016) Comparative analysis of the bonding modes between two antidiabetic drugs with beta-glucosidases from different species. Indian J Pharm Sci 78(4):525–536. doi:10.4172/pharmaceutical-sciences.1000146

    Article  Google Scholar 

  49. Yar M, Bajda M, Shahzadi L, Shahzad SA, Ahmed M, Ashraf M, Alam U, Khan IU, Khan AF (2014) Novel synthesis of dihydropyrimidines for a-glucosidase inhibition to treat type 2 diabetes: in vitro biological evaluation and in silico docking. Bioorg Chem 54:96–104. doi:10.1016/j.bioorg.2014.05.003

    Article  CAS  Google Scholar 

  50. Devipriya B, Kumaradhas P (2013) Molecular flexibility and the electrostatic moments of curcumin and its derivatives in the active site of p300: a theoretical charge density study. Chem Biol Interact 204:153–156. doi:10.1016/j.cbi.2013.05.002

    Article  CAS  Google Scholar 

  51. Yang HY, Murphy-Ullrich JE, Song YH (2016) Molecular insights for the role of key residues of calreticulin in its binding activities. Biophys J 110: p53a

  52. Sudha A, Srinivasan P, Thamilarasan V, Sengottuvelan N (2016) Exploring the binding mechanism of 5-hydroxy-3′,4′,7-trimethoxyflavone with bovine serum albumin: Spectroscopic and computational approach, Spectrochim Acta. A Mol Biomol Spectrosc 157:170–181. doi:10.1016/j.saa.2015.12.028

    Article  CAS  Google Scholar 

  53. Guo XC, He DY, Huang L, Liu LM, Liu LJ, Yang HJ (2012) Strain energy in enzyme-substrate binding: An energetic insight into the flexibility versus rigidity of enzyme active site. Comput Theor Chem 995:17–23. doi:10.1016/j.comptc.2012.06.017

    Article  CAS  Google Scholar 

  54. Qi YJ, Zhao YM, Lu HN, Jin NZ (2016) Exploring molecular flexibility and the interactions of Quercetin derivatives in the active site of α-glucosidase using molecular docking and charge density analysis. Comput Theor Chem 1094:55–68. doi:10.1016/j.comptc.2016.09.004

    Article  CAS  Google Scholar 

  55. Devipriya B, Kumaradhas P (2012) Probing the effect of intermolecular interaction and understanding the electrostatic moments of anacardic acid in the active site of p300 enzyme via DFT and charge density analysis. J Mol Graph Model 34:57–66. doi:10.1016/j.jmgm.2011.12.003

    Article  CAS  Google Scholar 

  56. Azhagesan RP, Poomani K (2013) Exploring the conformation, charge density distribution and the electrostatic properties of galanthamine molecule in the active site of AChE using DFT and AIM theory. Int J Quant Chem 113:1200–1208. doi:10.1002/qua.24251

    Article  Google Scholar 

  57. Cukrowski I, de Lange JH, Adeyinka AS, Mangondo P (2015) Evaluating common QTAIM and NCI interpretations of the electron density concentration through IQA interaction energies and 1D cross-sections of the electron and deformation density distributions. Comput Theor Chem 1053:60–76. doi:10.1016/j.comptc.2014.10.005

    Article  CAS  Google Scholar 

  58. Kulkarni GU, Kumaradhas P, Rao CNR (1998) Charge density study of the polymorphs of p-nitrophenol. Chem Mater 10:3498–3505

    Article  CAS  Google Scholar 

  59. Ren FD, Cao DL, Shi WJ, Gao HF (2016) A theoretical prediction of the relationships between the impact sensitivity and electrostatic potential in strained cyclic explosive and application to H-bonded complex of nitrocyclohydrocarbon. J Mol Model 22:97. doi:10.1007/s00894-016-2967-3

    Article  Google Scholar 

  60. Selvaraju K, Jothi M, Kumaradhas P (2012) Understanding the charge density distribution and the electrostatic properties of hexadecane molecular nanowire under electric field using DFT and AIM theory. Comput Theor Chem 992:9–17. doi:10.1016/j.comptc.2012.04.019

    Article  CAS  Google Scholar 

  61. Wawer I, Zielinska A (1997) 13C-CP-MAS-NMR studies of flavonoids. I. Solid-state conformation of quercetin, quercetin 5′-sulphonic acid and some simple polyphenols. Solid State Nucl Magn Reson 10:33–38

    Article  CAS  Google Scholar 

  62. Balachandran V, Karpagam V, Revathi B, Kavimani M, Ilango G (2015) Conformational stability, spectroscopic and computational studies, HOMO-LUMO, NBO, ESP analysis, thermodynamic parameters of natural bioactive compound with anticancer potential of 2-(hydroxymethyl)anthraquinone. Spectrochim Acta A Mol Biomol Spectrosc 150:631–640. doi:10.1016/j.saa.2015.06.007

    Article  CAS  Google Scholar 

  63. Elmoussaoui S, Korek M (2015) Electronic structure with dipole moment calculation of the low-lying electronic states of ZnBr molecule. Comput Theor Chem 1068:42–46. doi:10.1016/j.comptc.2015.06.015

    Article  CAS  Google Scholar 

  64. Targema M, Obi-Egbedi NO, Adeoye MD (2013) Molecular structure and solvent effects on the dipole moments and polarizabilities of some aniline derivatives. Comput Theor Chem 1012:47–53. doi:10.1016/j.comptc.2013.02.020

    Article  CAS  Google Scholar 

  65. Panicker CY, Varghese HT, Narayana B, Divya K, Sarojini BK, War JA, Van Alsenoy C, Fun HK (2015) FT-IR, NBO, HOMO–LUMO, MEP analysis and molecular docking study of Methyl N-({[2-(2-methoxyacetamido)-4-(phenylsulfanyl)phenyl]amino}[(methoxycarbonyl) imino] methyl) carbamate. Spectrochim Acta A Mol Biomol Spectrosc 148:29–42. doi:10.1016/j.saa.2015.03.064

    Article  CAS  Google Scholar 

  66. Sambathkumar K, Jeyavijayan S, Arivazhagan M (2015) Electronic structure investigations of 4-aminophthal hydrazide by UV-visible, NMR spectral studies and HOMO-LUMO analysis by ab initio and DFT calculations. Spectrochim Acta A Mol Biomol Spectrosc 147:124–138. doi:10.1016/j.saa.2015.03.012

    Article  CAS  Google Scholar 

  67. Khan KM, Qurban S, Salar U, Taha M, Hussain S, Perveen S, Hameed A, Ismail NH, Riaz M, Wadood A (2016) Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of new thiazole derivatives. Bioorg Chem 68:245–258. doi:10.1016/j.bioorg.2016.08.010

    Article  CAS  Google Scholar 

  68. Wang G, Peng Z, Wang J, Li J, Li X (2016) Synthesis, biological evaluation and molecular docking study of N-arylbenzo[d]oxazol-2-amines as potential α-glucosidase inhibitors. Bioorg Med Chem 24(21):5374–5379

    Article  CAS  Google Scholar 

  69. Sun H, Zhang Y, Ding W, Zhao X, Song X, Wang D, Li Y, Han K, Yang Y, Ma Y, Wang R, Wang D, Yu P (2016) Inhibitory activity evaluation and mechanistic studies of tetracyclic oxindole derivatives as α-glucosidase inhibitors. Eur J Med Chem 123:365–378. doi:10.1016/j.ejmech.2016.07.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Ethnic Affairs Commission Research Projects (14XBZ021), Research Foundation of the Gansu Higher Education Institutions of China (2014B-006), and the Fundamental Research Funds for the Central Universities (NO.31920130035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Qi.

Ethics declarations

Competing interests

The authors declare they have no competing interests.

Additional information

Y. J. Qi and H. N. Lu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y.J., Lu, H.N., Zhao, Y.M. et al. Probing the influence of carboxyalkyl groups on the molecular flexibility and the charge density of apigenin derivatives. J Mol Model 23, 70 (2017). https://doi.org/10.1007/s00894-017-3221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3221-3

Keywords

Navigation