Skip to main content
Log in

Interaction of a Ti-doped semi-fullerene (TiC30) with molecules of CO and CO2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using density functional theory (DFT) and molecular dynamics (MD), we studied the interaction of a titanium atom with a half of a C60 fullerene (i.e., C30), formed from the corannulene structure with a pentagonal base. We considered atmospheric pressure and 300 K. We found that the most stable adsorption of the titanium atom on C30 occurs in the concave surface of the molecule. Afterward, we investigated the interaction of the system C30-titanium with carbon monoxide and carbon dioxide molecules, respectively. We found that each of these molecules is chemisorbed, with no dissociation. The value of the adsorption energy for the carbon monoxide molecule varies from −0.897 to −1.673 eV, and for the carbon dioxide molecule, it is between −1.065 and −1.274 eV. These values depend on the initial orientation of these molecules with respect to TiC30.

The TiC30 system chemisorbs CO or CO2ᅟwith no dissociation at atmospheric pressure and 300K

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923

    Article  CAS  Google Scholar 

  2. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822

    Article  CAS  Google Scholar 

  3. Mendes RG, Bachmatiuk A, Büchner B, Cuniberti G, Rümmeli MH (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1:401–428

    Article  CAS  Google Scholar 

  4. Scida K, Stege PW, Haby G, Messina GA, García CD (2011) Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal Chim Acta 691:6–17

    Article  CAS  Google Scholar 

  5. Xie R-H, Bryant GW, Zhao J, Smith VH, Di Carlo A, Pecchia A (2003) Tailorable acceptor C60 − nBn and donor C60 − mNm pairs for molecular electronics. Phys Rev Lett 90:206602

    Article  Google Scholar 

  6. Langa F, Nierengarten JSF (2010) Fullerene-rich nanostructures. In: Adv. Nanomater // Adv. Nanomater, pp 699–714

  7. Kawasaki K, Sugita T, Ebisawa S (1967) Adsorption, surface reaction, and mutual displacement of CO, CO2 and O2 on titanium film. Surf Sci 7:502–506

    Article  CAS  Google Scholar 

  8. Raupp GB, Dumesic JA (1985) Adsorption of carbon monoxide, carbon dioxide, hydrogen, and water on titania surfaces with different oxidation states. J Phys Chem 89:5240–5246

    Article  CAS  Google Scholar 

  9. Mishra AK, Ramaprabhu S (2011) Carbon dioxide adsorption in graphene sheets. AIP Adv 1:032152

    Article  Google Scholar 

  10. Zeinalipour-Yazdi CD, Cooksy AL, Efstathiou AM (2008) CO adsorption on transition metal clusters: trends from density functional theory. Surf Sci 602:1858–1862

    Article  CAS  Google Scholar 

  11. Martínez-Alonso A, Tascón JMD, Bottani EJ (2001) Physical adsorption of Ar and CO 2 on C 60 fullerene. J Phys Chem B 105:135–139

    Article  Google Scholar 

  12. Iwamatsu S, Stanisky CM, Cross RJ, Saunders M, Mizorogi N, Nagase S et al. (2006) Carbon monoxide inside an open-cage fullerene. Angew Chem Int Ed 45:5337–5340

    Article  CAS  Google Scholar 

  13. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    Article  CAS  Google Scholar 

  14. Scott LT (1996) Fragments of fullerenes: novel syntheses, structures and reactions. Pure Appl Chem 68:291–300

    CAS  Google Scholar 

  15. Chen MK, Hsin HJ, Wu T-C, Kang BY, Lee YW, Kuo MY et al. (2014) Highly curved bowl-shaped fragments of fullerenes: synthesis, structural analysis, and physical properties. Chem Eur J 20:598–608

    Article  CAS  Google Scholar 

  16. Chen R, Lu R-Q, Shi K, Wu F, Fang H-X, Niu Z-X et al. (2015) Corannulene derivatives with low LUMO levels and dense convex–concave packing for n-channel organic field-effect transistors. Chem Commun 51:13768–13771

    Article  CAS  Google Scholar 

  17. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  18. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al. (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  20. Troullier N, Martıns JL (1991) Efficient pseudopotentials for planewave calculations. Phys Rev B 431:1993–2006

    Article  Google Scholar 

  21. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  22. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  23. Kokalj A (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput Mater Sci 28:155–168

    Article  CAS  Google Scholar 

  24. Lide DR (2013–2014) CRC handbook of chemistry and physics, 94th edn. CRC, Boca Raton, pp 9–16

  25. David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP et al. (1991) Crystal structure and bonding of ordered C60. Nature 353:147–149

    Article  CAS  Google Scholar 

  26. Bulat FA, Burgess JS, Matis BR, Baldwin JW, Macaveiu L, Murray JS, Politzer P (2012) Hydrogenation and fluorination of graphene models: analysis via the average local ionization energy. J Phys Chem A 116:8644–8652

    Article  CAS  Google Scholar 

  27. Murray JS, Shields ZP-I, Lane P, Macaveiu L, Bulat FA (2013) The average local ionization energy as a tool for identifyinbrsg reactive sites on defect-containing model graphene systems. J Mol Model 2825–2833

Download references

Acknowledgments

The authors wish to thank Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México for the partial financial support by Grant IN-106514 and UNAM super-computing center for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Magana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canales, M., Ramírez-de-Arellano, J.M. & Magana, L.F. Interaction of a Ti-doped semi-fullerene (TiC30) with molecules of CO and CO2 . J Mol Model 22, 223 (2016). https://doi.org/10.1007/s00894-016-3086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3086-x

Keywords

Navigation