Skip to main content
Log in

Different transport behaviors of NH4 + and NH3 in transmembrane cyclic peptide nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Two water-filled transmembrane cyclic peptide nanotubes (CPNTs) of 8×cyclo-(WL)n=4,5/POPE were chosen to investigate the dependences of the transport properties of the positive NH4 + and neutral NH3 on the channel radius. Molecular dynamic simulations revealed that molecular charge, size, ability to form H-bonds and channel radius all significantly influence the behaviors of NH4 + and NH3 in a CPNT. Higher electrostatic interactions, more H-bonds, and water-bridges were found in the NH4 + system, resulting in NH4 + meeting higher energy barriers, while NH3 can enter, exit and permeate the channels effortlessly. This work sheds a first light on the differences between the mechanisms of NH4 + and NH3 moving in a CPNT at an atomic level.

Snapshot of the simulation system of NH4 +_octa-CPNT with an NH4 + initially positioned at one mouth of the tube, PMF profiles for single NH4 + ion and NH3 molecule moving through water-filled transmembrane CPNTs of 8×cyclo-(WL)n=4,5/POPE and sketch graphs of the possible H-bond forms of NH3 and NH4 + with the neighboring water

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    Article  CAS  Google Scholar 

  2. Hartgerink JD, Granja JR, Milligan RA, Ghadiri MR (1996) Self-assembling peptide nanotubes. J Am Chem Soc 118:43–50

    Article  CAS  Google Scholar 

  3. Granja JR, Ghadiri MR (1994) Channel-mediated transport of glucose across lipid bilayers. J Am Chem Soc 116:10785–10786

    Article  CAS  Google Scholar 

  4. Khazanovich N, Granja JR, McRee DE, Milligan RA, Ghadiri MR (1994) Nanoscale tubular ensembles with specified internal diameters. Design of a self-assembled nanotube with a 13-Å pore. J Am Chem Soc 116:6011–6012

  5. Liu J, Fan JF, Tang M, Cen M, Yan JF, Liu Z, Zhou WQ (2010) Water diffusion behaviors and transportation properties in transmembrane cyclic hexa-, octa- and decapeptide nanotubes. J Phys Chem B 114:12183–12192

    Article  CAS  Google Scholar 

  6. Comer J, Dehez F, Cai W, Chipot C (2013) Water conduction through a peptide nanotube. J Phys Chem C 117:26797–26803

    Article  CAS  Google Scholar 

  7. Liu DY, Fan JF, Song XZ, Li R, Li H (2013) MD simulations on the influences of an external force on the water transportation behavior through a cyclic peptide nanotube. Comput Mater Sci 78:47–54

    Article  CAS  Google Scholar 

  8. Li H, Fan JF, Li R, Yu Y, Yan XL (2014) Molecular dynamics studies on the influences of a gradient electric field on the water chain in a peptide nanotube. J Mol Model 20:2370

    Article  CAS  Google Scholar 

  9. Dehez F, Tarek M, Chipot C (2007) Energetics of ion transport in a peptide nanotube. J Phys Chem B 111:10633–10635

    Article  CAS  Google Scholar 

  10. Song XZ, Fan JF, Liu DY, Li H, Li R (2013) Molecular dynamics study of Na+ transportation in a cyclic peptide nanotube and its influences on water behaviors in the tube. J Mol Model 19:4271–4282

    Article  CAS  Google Scholar 

  11. Yan XL, Fan JF, Yu Y, Xu J, Zhang MM (2015) Transport behavior of a single Ca2+, K+, and Na+ in a water-filled transmembrane cyclic peptide nanotube. J Chem Inf Model 55:998–1011

    Article  CAS  Google Scholar 

  12. Liu HF, Chen J, Shen Q, Fu W, Wu W (2010) Molecular insights on the cyclic peptide nanotube-mediated transportation of antitumor drug 5-fluorouracil. Mol Pharm 7:1985–1994

    Article  CAS  Google Scholar 

  13. Vijayaraj R, Van Damme S, Bultinck P, Subramanian V (2013) Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes. Phys Chem Chem Phys 15:1260–1270

    Article  CAS  Google Scholar 

  14. Li R, Fan JF, Li H, Yan XL, Yu Y (2015) Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes. J Chem Phys 143:015101

    Article  CAS  Google Scholar 

  15. Saier MH, Eng BH, Fard S, Garg J, Haggerty DA, Hutchinson WJ, Jack DL, Lai EC, Liu HJ, Nusinew DP, Omar AM, Pao SS, Paulsen IT, Quan JA, Sliwinski M, Tseng T-T, Wachi S, Young GB (1999) Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422:1–56

    Article  CAS  Google Scholar 

  16. Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    Article  CAS  Google Scholar 

  17. Lin YC, Cao ZX, Mo YR (2006) Molecular dynamics simulations on the escherichia coli ammonia channel protein AmtB: mechanism of ammonia/ammonium transport. J Am Chem Soc 128:10876–10884

  18. Bostick DL, Brooks ШCL (2007) Deprotonation by dehydration: the origin of ammonium sensing in the AmtB channel. PLoS Comput Biol 3:e22

    Article  CAS  Google Scholar 

  19. Baday S, Orabi EA, Wang S, Lamoureux G, Bernèche S (2015) Mechanism of NH4 + recruitment and NH3 transport in Rh proteins. Structure 23:1550–1557

    Article  CAS  Google Scholar 

  20. Luzhkov VB, Almlöf M, Nervall M, Åqvist J (2006) Computational study of the binding affinity and selectivity of the bacterial ammonium transporter AmtB. Biochemistry 45:10807–10814

    Article  CAS  Google Scholar 

  21. Ishikita H, Knapp E-W (2007) Protonation states of ammonia/ammonium in the hydrophobic pore of ammonia transporter protein AmtB. J Am Chem Soc 129:1210–1215

    Article  CAS  Google Scholar 

  22. Holm LM, Jahn TP, Møller ALB, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH4 + permeability in aquaporin-expressing Xenopus oocytes. Pflügers Arch 450:415–428

  23. Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci USA 105:1198–1203

    Article  Google Scholar 

  24. Dynowski M, Mayer M, Moran O, Ludewig U (2008) Molecular determinants of ammonia and urea conductance in plant aquaporin homologs. FEBS Lett 582:2458–2462

    Article  CAS  Google Scholar 

  25. Britt D, Tranchemontagne D, Yaghi OM (2008) Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc Natl Acad Sci USA 105:11623–11627

    Article  Google Scholar 

  26. Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2:235–238

    Article  CAS  Google Scholar 

  27. Helminen J, Helenius J, Paatero E, Turunen I (2001) Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K. J Chem Eng Data 46:391–399

    Article  CAS  Google Scholar 

  28. Ye L, Lo BTW, Qu J, Wilkinson I, Hughes T, Murray CA, Tang CC, Tsang SCE (2016) Probing atomic positions of adsorbed ammonia molecules in zeolite. Chem Commun 52:3422–3425

    Article  CAS  Google Scholar 

  29. Lo BTW, Ye L, Qu J, Sun JL, Zheng JL, Kong DJ, Murray CA, Tang CC, Tsang SCE (2016) Elucidation of adsorbate structures and interactions on brønsted acid sites in H-ZSM-5 by synchrotron X-ray powder diffraction. Angew Chem 128:1–5

    Article  Google Scholar 

  30. Li R, Fan JF, Li H, Yan XL, Yu Y (2013) Exploring the dynamic behaviors and transport properties of gas molecules in a transmembrane cyclic peptide nanotube. J Phys Chem B 117:14916–14927

    CAS  Google Scholar 

  31. Akbari E, Buntat Z, Enzevaee A, Mirazimiabarghouei SJ, Bahadoran M, Shahidi A, Nikoukar A (2014) An analytical model and ANN simulation for carbon nanotube based ammonium gas sensors. RSC Adv 4:36896–36904

    Article  CAS  Google Scholar 

  32. Peyghan AA, Tabar MB, Kakemam J (2013) NH3 on a BC3 nanotube: effect of doping and decoration of aluminum. J Mol Model 19:3793–3798

    Article  CAS  Google Scholar 

  33. Zheng H, Han LJ, Ma HW, Zheng Y, Zhang HM, Liu D, Liang S (2008) Adsorption characteristics of ammonium ion by zeolite 13X. J Hazard Mater 158:577–584

    Article  CAS  Google Scholar 

  34. Lee CK, Lai LH, Liu SS, Huang FC, Chao HP (2014) Application of titanate nanotubes for ammonium adsorptive removal from aqueous solutions. J Taiwan Inst Chem E 45:2950–2956

  35. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  36. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  37. Chen IJ, Yin D, MacKerell AD (2002) Combined ab initio/empirical approach for optimization of Lennard-Jones parameters for polar-neutral compounds. J Comput Chem 23:199–213

  38. Nygaard TP, Rovira C, Peters GH, Jensen MØ (2006) Ammonium recruitment and ammonia transport by E. coli ammonia channel AmtB. Biophys J 91:4401–4412

    Article  CAS  Google Scholar 

  39. Darden T, York D, Pedersen L (1993) Particle mesh ewald: an N·log (N) method for ewald sums in large systems. J Chem Phys 98:10089–10092

  40. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  41. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  42. Pastor RW, Brooks BR, Szabo A (1988) An analysis of the accuracy of langevin and molecular dynamics algorithms. Mol Phys 65:1409–1419

    Article  Google Scholar 

  43. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  44. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  45. Darve E, Rodríguez-Gómez D, Pohorille A (2008) Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 128:144120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21173154) and the Priority Academic Program Development of Jiansu Higher Education Institutions. It was further supported by the National Basic Research Program of China (973 program, Grant No.2012CBB25803). The authors are grateful to Dr. Jian Liu and Mr. Rui Li for their insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfen Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Fan, J., Xu, J. et al. Different transport behaviors of NH4 + and NH3 in transmembrane cyclic peptide nanotubes. J Mol Model 22, 233 (2016). https://doi.org/10.1007/s00894-016-3081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3081-2

Keywords

Navigation