Skip to main content

Advertisement

Log in

Discovery of ERBB3 inhibitors for non-small cell lung cancer (NSCLC) via virtual screening

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

As a member of the epidermal growth factor receptor family (EGFR) of receptor tyrosine kinases, ERBB3 plays an important role in mediating cellular growth and differentiation. Recent research works identified that CD74-NRG1 fusions lead to overexpression of the EGF-like domain of NRG1, and thus activate ERBB3 and PI3K-AKT signaling pathways. The fusion was detected in lung adenocarcinomas, and served as an important oncogenic factor for ERBB3 driven cancers. A sequential virtual screening strategy has been applied to ERBB3 crystal structure using databases of natural products and Chinese traditional medicine compounds, and led to identification of a group of small molecular compounds potentially capable of blocking ERBB3. Six small molecular compounds were selected for in vitro analysis. Five of these molecules significantly inhibited the growth of A549 cells. Among them, compound VS1 is the most promising one with IC50 values of 269.75 μM, comparing to the positive control of nimustine hydrochloride with IC50 values of 264.14 μM. With good specificity and predicted ADMET results, our results support the feasibility by using a pharmacophore of the compound VS1 for designing and optimization of ERBB3 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  1. Gridelli C, Perrone F, Monfardini S (1997) Lung cancer in the elderly. Eur J Cancer 33(14):2313–2314

    Article  CAS  Google Scholar 

  2. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29. doi:10.3322/caac.21208

    Article  Google Scholar 

  3. da Cunha Santos G, Shepherd FA, Tsao MS (2011) EGFR mutations and lung cancer. Annu Rev Pathol: Mech Dis 6:49–69

    Article  Google Scholar 

  4. Dahabreh IJ, Linardou H, Siannis F, Kosmidis P, Bafaloukos D, Murray S (2010) Somatic EGFR mutation and gene copy gain as predictive biomarkers for response to tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 16(1):291–303. doi:10.1158/1078-0432.CCR-09-1660

    Article  CAS  Google Scholar 

  5. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307(5951):521–527

    Article  CAS  Google Scholar 

  6. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA (1984) The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312(5994):513–516

    Article  CAS  Google Scholar 

  7. Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA (1989) Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci U S A 86(23):9193–9197

    Article  CAS  Google Scholar 

  8. Plowman GD, Culouscou JM, Whitney GS, Green JM, Carlton GW, Foy L, Shoyab M (1993) Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci U S A 90(5):1746–1750

    Article  CAS  Google Scholar 

  9. Liu P, Cleveland TE, Bouyain S, Byrne PO, Longo PA, Leahy DJ (2012) A single ligand is sufficient to activate EGFR dimers. Proc Natl Acad Sci 109(27):10861–10866

    Article  CAS  Google Scholar 

  10. Cho H, Leahy D (2002) Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297(5585):1330–1333

    Article  CAS  Google Scholar 

  11. Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284(1):14–30

    Article  CAS  Google Scholar 

  12. Nakaoku T, Tsuta K, Ichikawa H, Shiraishi K, Sakamoto H, Enari M, Kohno T (2014) Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin Cancer Res 20(12):3087–3093. doi:10.1158/1078-0432.CCR-14-0107

    Article  CAS  Google Scholar 

  13. Fernandez-Cuesta L, Plenker D, Osada H, Sun R, Menon R, Leenders F, Thomas RK (2014) CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov 4(4):415–422. doi:10.1158/2159-8290.CD-13-0633

    Article  CAS  Google Scholar 

  14. Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19(3):183–232

    Article  CAS  Google Scholar 

  15. Arteaga CL, Engelman JA (2014) ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25(3):282–303. doi:10.1016/j.ccr.2014.02.025

    Article  CAS  Google Scholar 

  16. Schoeberl B, Pace EA, Fitzgerald JB et al (2009) Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor–PI3K axis. Sci Signal 2(77):ra31

    Article  Google Scholar 

  17. Garrett JT, Sutton CR, Kurupi R, Bialucha CU, Ettenberg SA, Collins SD, Arteaga CL (2013) Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110α inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Res 73(19):6013–6023

    Article  CAS  Google Scholar 

  18. Fitzgerald JB, Johnson BW, Baum J, Adams S, Iadevaia S, Tang J, Lugovskoy AA (2014) MM-141, an IGF-IR–and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol Cancer Ther 13(2):410–425

    Article  CAS  Google Scholar 

  19. McDonagh CF, Huhalov A, Harms BD, Adams S, Paragas V, Oyama S, Nielsen UB (2012) Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther 11(3):582–593

    Article  CAS  Google Scholar 

  20. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Wong A (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27(34):4702–4711

    Article  CAS  Google Scholar 

  21. Patridge E, Gareiss P, Kinch MS, Hoyer D (2015) An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today 21:204–207

    Article  Google Scholar 

  22. Tang JL, Liu BY, Ma KW (2008) Traditional Chinese medicine. Lancet 372(9654):1938–1940

    Article  Google Scholar 

  23. Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837

    Article  CAS  Google Scholar 

  24. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminf 3:33. doi:10.1186/1758-2946-3-33

    Article  Google Scholar 

  25. Xinrui S, Da L, Jie C, Yong Z (2014) Computer aided drug screening platform and its application. Chinese J Bioinform 12(4)

  26. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  Google Scholar 

  27. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for evaluating chemical ADMET properties. J Chem Inf Model 52(11):3099–3105

    Article  CAS  Google Scholar 

  28. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072

    Article  CAS  Google Scholar 

  29. Cheng F, Li W, Zhou Y, Li J, Shen J, Leea PW, Tang Y (2013) Prediction of human genes and diseases targeted by xenobiotics using predictive toxicogenomic-derived models (PTDMs). Mol BioSyst 9:1316–1325

    Article  CAS  Google Scholar 

  30. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(D1):D1091–D1097

    Article  CAS  Google Scholar 

  31. Tosh DK, Padia J, Salvemini D, Jacobson KA (2015) Efficient, large-scale synthesis and preclinical studies of MRS5698, a highly selective A3 adenosine receptor agonist that protects against chronic neuropathic pain. Purinergic Signal 11(3):371–387

    Article  CAS  Google Scholar 

  32. Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M (1999) A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36(2):47–50

    Article  CAS  Google Scholar 

  33. Miyamoto T, Min W, Lillehoj HS (2002) Lymphocyte proliferation response during Eimeria tenella infection assessed by a new, reliable, nonradioactive colorimetric assay. Avian Dis 46(1):10–16

    Article  Google Scholar 

  34. Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1:7

    Article  Google Scholar 

  35. Garner AP, Bialucha CU, Sprague ER, Garrett JT, Sheng Q, Li S, Ettenberg SA (2013) An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Cancer Res 73(19):6024–6035

    Article  CAS  Google Scholar 

  36. Beijing Computing Center-the Department of Computational Medicine-Computer aided drug screening platform (n.d.). Retrieved from http://www.vslead.com/

  37. Mitsuhashi Y, Lnaba M, Sugiyama Y, Kohayashi T (1992) In vitro measurement of chemosensitivity of human small cell lung and gastric cancer cell lines toward cell cycle phase‐nonspecific agents under the clinically equivalent area under the curve. Cancer 70(10):2540–2546

    Article  CAS  Google Scholar 

  38. Saijo N, Niitani H (1980) Experimental and clinical effect of ACNU in Japan with emphasis on small-cell carcinoma of the lung. Cancer Chemother Pharmacol 4:165–171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by 2015 prior sci-tech programs of Chinese overseas talents in Beijing, and Beijing Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Zhang, Y., Li, X. et al. Discovery of ERBB3 inhibitors for non-small cell lung cancer (NSCLC) via virtual screening. J Mol Model 22, 135 (2016). https://doi.org/10.1007/s00894-016-3007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3007-z

Keywords

Navigation