Skip to main content
Log in

Scorpion toxins prefer salt solutions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

There is a wide variety of ion channel types with various types of blockers, making research in this field very complicated. To reduce this complexity, it is essential to study ion channels and their blockers independently. Scorpion toxins, a major class of blockers, are charged short peptides with high affinities for potassium channels. Their high selectivity and inhibitory properties make them an important pharmacological tool for treating autoimmune or nervous system disorders. Scorpion toxins typically have highly charged surfaces and—like other proteins—an intrinsic ability to bind ions (Friedman J Phys Chem B 115(29):9213–9223, 1996; Baldwin Biophys J 71(4):2056–2063, 1996; Vrbka et al. Proc Natl Acad Sci USA 103(42):15440–15444, 2006a; Vrbka et al. J Phys Chem B 110(13):7036-43, 2006b). Thus, their effects on potassium channels are usually investigated in various ionic solutions. In this work, computer simulations of protein structures were performed to analyze the structural properties of the key residues (i.e., those that are presumably involved in contact with the surfaces of the ion channels) of 12 scorpion toxins. The presence of the two most physiologically abundant cations, Na+ and K+, was considered. The results indicated that the ion-binding properties of the toxin residues vary. Overall, all of the investigated toxins had more stable structures in ionic solutions than in water. We found that both the number and length of elements in the secondary structure varied depending on the ionic solution used (i.e., in the presence of NaCl or KCl). This study revealed that the ionic solution should be chosen carefully before performing experiments on these toxins. Similarly, the influence of these ions should be taken into consideration in the design of toxin-based pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lecomte C, Sabatier JM, Van Rietschoten J, Rochat H (1998) Synthetic peptides as tools to investigate the structure and pharmacology of potassium channel-acting short-chain scorpion toxins. Biochimie 80(2):151–154

    Article  CAS  Google Scholar 

  2. Chen SW, Pellequer JL (2004) Identification of functionally important residues in proteins using comparative models. Curr Med Chem 11:595–605

    Article  CAS  Google Scholar 

  3. Lourenco WR (1994) Diversity and endemism in tropical versus temperate scorpion communities. Biogiographica 70:155–160

    Google Scholar 

  4. Possani LD, Merino E, Corona M, Bolivar F, Becerril B (2000) Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 82:861–868

    Article  CAS  Google Scholar 

  5. Possani LD, Becerril B, Delepierre M, Tytgat J (1999) Scorpion toxins specific for Na+-channels. Eur J Biochem 264(2):287–300

  6. Tytgat J, Chandy KG, Garcia ML, Gutman GA, Martin-Eauclaire MF, van der Walt JJ, Possani LD (1999) A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. Trends Pharmacol Sci 20(11):444–447

    Article  CAS  Google Scholar 

  7. Ashcroft FM (2000) Ion channels and diseases, 2nd edn. Academic, New York

  8. Wrisch A, Grissmer S (2000) Structural differences of bacterial and mammalian K+ channels. J Biol Chem 275:39345–39353

  9. Ashcroft FM (2006) From molecule to malady. Nature 440:440–447

    Article  CAS  Google Scholar 

  10. Miller C (1995) The charybdotoxin family of K+ channel-blocking peptides. Neuron 15(1):5–10

  11. Thompson J, Begenisich T (2000) Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K+ channels. Biophys J 78:2382–2391

  12. Garcia-Valdes J, Zamudio FZ, Toro L, Possani LD (2001) Slotoxin, αKTx1.11, a new scorpion peptide blocker of MaxiK channels that differentiates between α and α + β (β1 or β4) complexes. FEBS Lett 505:369–373

    Article  CAS  Google Scholar 

  13. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 25(5):280–289

  14. Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3:435–448

    Article  CAS  Google Scholar 

  15. Kobayashi Y, Takashima H, Tamaoki H et al (1991) The cystine-stabilized alpha-helix: a common structural motif of ion-channel blocking neurotoxic peptides. Biopolymers 31:1213–1220

  16. Aiyar J, Withka JM, Rizzi JP, Singleton DH, Andrews GC, Lin W, Boyd J, Hanson DG, Simon M, Dethlefs B, Lee CL, Hall JE, Gutman GA, Chandy KG (1995) Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron 15:1169–1181

  17. Park CS, Miller C (1992) Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel. Neuron 9(2):307–313

  18. Anderson CS, MacKinnon R, Smith C, Miller C (1988) Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength. J Gen Physiol 91(3):317–333

  19. Avdonin V, Nolan B, Sabatier JM, De Waard M, Hoshi T (2000) Mechanisms of maurotoxin action on Shaker potassium channels. Biophys J 79(2):776–787

    Article  CAS  Google Scholar 

  20. Ellis KC, Tenenholz TC, Jerng H, Hayhurst M, Dudlak CS, Gilly WF, Blaustein MP, Weber DJ (2001) Interaction of a toxin from the scorpion Tityus serrulatus with a cloned K+ channel from squid (sqKv1A). Biochemistry 40:5942–5953

  21. Garcia ML, Gao YD, McManus OB, Kaczorowski GJ (2001) Potassium channels: from scorpion venoms to high-resolution structure. Toxicon 39:739–748

    Article  CAS  Google Scholar 

  22. Gómez-Lagunas F, Batista CV, Olamendi-Portugal T, Ramírez-Domínguez ME, Possani LD (2004) Inhibition of the collapse of the Shaker K+ conductance by specific scorpion toxins. J Gen Physiol 123(3):265–279

  23. Fernandez I, Romi R, Szendeffy S, Martin-Eauclaire MF, Rochat H, Van Rietschoten J, Pons M, Giralt E (1994) Kaliotoxin (1–37) shows structural differences with related potassium channel blockers. Biochemistry 33(47):14256–14263

    Article  CAS  Google Scholar 

  24. Darbon H, Blanc E, Sabatier JM (1999) Three-dimensional structure of scorpion toxins: towards a new model of interaction with potassium channels. In: Darbon H, Sabatier JM (eds) Perspectives in drug discovery and design: animal toxins and potassium channels, vol 15/16. Kluwer, Dordrecht, pp 40–60

  25. Peter JM, Varga Z, Hajdu PR, Gaspar J, Damjanovich S, Horjales E, Possani LD (2001) Effects of toxins Pi2 and Pi3 on human T lymphocyte Kv1.3 channels: the role of Glu-7 and Lys24. J Membrane Biol 179:13–25

  26. Mouhat S, Mosbah A, Visan V, Wulff H, Delepierre M, Darbon H, Grissmer S, De Waard M, Sabatier JM (2004) The ‘functional’ dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels. Biochem J 377(Pt 1):25–36

  27. Krezel AM, Kasibhatla C, Hidalgo P, MacKinnon R, Wagner G (1995) Solution structure of the potassium channel inhibitor agitoxin 2: caliper for probing channel geometry. Protein Sci 4(8):1478–1489

    Article  CAS  Google Scholar 

  28. Zhang N, Chen X, Li M, Cao C, Wang Y, Wu G, Hu G, Wu H (2004) Solution structure of BmKK4, the first member of subfamily alpha-KTx 17 of scorpion toxins. Biochemistry 43(39):12469–12476

    Article  CAS  Google Scholar 

  29. Jouirou B, Mosbah A, Visan V, Grissmer S, M’Barek S, Fajloun Z, Van Rietschoten J, Devaux C, Rochat H, Lippens G, El Ayeb M, De Waard M, Mabrouk K, Sabatier JM (2004) Cobatoxin 1 from Centruroides noxius scorpion venom: chemical synthesis, three dimensional structure in solution, pharmacology and docking on K+ channels. Biochem J 377(Pt 1):37–49

  30. Bontems F, Gilquin B, Roumestand C, Ménez A, Toma F (1992) Analysis of side-chain organization on a refined model of charybdotoxin: structural and functional implications. Biochemistry 31(34):7756–7764

    Article  CAS  Google Scholar 

  31. Savarin P, Romi-Lebrun R, Zinn-Justin S, Lebrun B, Nakajima T, Gilquin B, Menez A (1999) Structural and functional consequences of the presence of a fourth disulfide bridge in the scorpion short toxins: solution structure of the potassium channel inhibitor HsTX1. Protein Sci 8(12):2672–2685

    Article  CAS  Google Scholar 

  32. Renisio JG, Lu Z, Blanc E, Jin W, Lewis JH, Bornet O, Darbon H (1999) Solution structure of potassium channel-inhibiting scorpion toxin Lq2. Proteins 34(4):417–426

    Article  CAS  Google Scholar 

  33. Blanc E, Sabatier JM, Kharrat R, Meunier S, el Ayeb M, Van Rietschoten J, Darbon H (1997) Solution structure of maurotoxin, a scorpion toxin from Scorpio maurus, with high affinity for voltage-gated potassium channels. Proteins 29(3):321–333

  34. Johnson BA, Stevens SP, Williamson JM (1994) Determination of the three-dimensional structure of margatoxin by 1H, 13C, 15N triple-resonance nuclear magnetic resonance spectroscopy. Biochemistry 33(50):15061–15070

  35. Dauplais M, Gilquin B, Possani LD, Gurrola-Briones G, Roumestand C, Ménez A (1995) Determination of the three-dimensional solution structure of noxiustoxin: analysis of structural differences with related short-chain scorpion toxin. Biochemistry 34(51):16563–16573

    Article  CAS  Google Scholar 

  36. Jaravine VA, Nolde DE, Reibarkh MJ, Korolkova YV, Kozlov SA, Pluzhnikov KA, Grishin EV, Arseniev AS (1997) Three-dimensional structure of toxin OSK1 from Orthochirus scrobiculosus scorpion venom. Biochemistry 36(6):1223–1232

  37. Tenenholz TC, Rogowski RS, Collins JH, Blaustein MP, Weber DJ (1997) Solution structure for Pandinus toxin K-alpha (PiTX-K alpha), a selective blocker of A-type potassium channels. Biochemistry 36(10):2763–2771

  38. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  39. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  40. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  41. Khabiri M, Nikouee A, Cwiklik L, Grissmer S, Ettrich R (2011) Charybdotoxin unbinding from the mKv1.3 potassium channel: a combined computational and experimental study. J Phys Chem B 115(39):11490–11500

  42. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  43. Petsko GA (2004) Protein structure and function. New Science, London

  44. Wetzel R, Perry LJ, Baase WA, Becktel WJ (1988) Disulfide bonds and thermal stability in T4 lysozyme. Proc Natl Acad Sci USA 85(2):401–405

  45. Yu X, Tan NJ, Xiao R, Xu Y (2012) Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermos ability and altered acyl chain length specificity. PLoS One 7(10):e46388

  46. Melnik BS, Povarnitsyna TV, Glukhov AS, Melnik TN, Uversky VN (2012) Sarma RH (2012) SS-stabilizing proteins rationally: intrinsic disorder-based design of stabilizing disulphide bridges in GFP. J Biomol Struct Dyn 29(4):815–824

    Article  CAS  Google Scholar 

  47. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  48. Essmann U, Perera L, Berkowitz M (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592

    Article  CAS  Google Scholar 

  49. Hess B, Bekker H, Berendsen HJC, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1742

    Article  CAS  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

  51. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

  52. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  Google Scholar 

  53. Štěpánková V, Paterová J, Damborský J, Jungwirth P, Chaloupková R, Heyda J (2013) Cation-specific effects on enzymatic catalysis driven by interactions at the tunnel mouth. J Phys Chem B 117(21):6394–6402

    Article  Google Scholar 

  54. Chen X, Weber I, Harrison RW (2008) Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures. J Phys Chem B 112(38):12073–12080

    Article  CAS  Google Scholar 

  55. Grottesi A, Sansom MS (2003) Molecular dynamics simulations of a K+ channel blocker: Tc1 toxin from Tityus cambridgei. FEBS Lett 535(1–3):29–33

  56. Nikouee A, Khabiri M, Grissmer S, Ettrich R (2012) Charybdotoxin and margatoxin acting on the human voltage-gated potassium channel hKv1.3 and its H399N mutant: an experimental and computational comparison. J Phys Chem B 116(17):5132–5140

  57. Soares CM, Teixeira VH, Baptista AM (2003) Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. Biophys J 84:1628–1641

    Article  CAS  Google Scholar 

  58. Crevenna AH, Naredi-Rainer N, Lamb DC, Wedlich-Söldner R, Dzubiella J (2012) Effects of Hofmeister ions on the α-helical structure of proteins. Biophys J 102(4):907–915

    Article  CAS  Google Scholar 

  59. Hidalgo P, MacKinnon R (1995) Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268(5208):307–310

  60. Gross A, MacKinnon R (1996) Agitoxin footprinting the Shaker potassium channel pore. Neuron 16(2):399–406

  61. Li MH, Zhang NX, Chen XQ, Wu G, Wu HM, Hu GY (2003) BmKK4, a novel toxin from the venom of Asian scorpion Buthus martensi Karsch, inhibits potassium currents in rat hippocampal neurons in vitro. Toxicon 42(2):199–205

  62. Rashid MH, Huq R, Tanner MR, Chhabra S, Khoo KK, Estrada R, Dhawan V, Chauhan S, Pennington MW, Beeton C, Kuyucak S, Norton RS (2014) A potent and Kv1.3-selective analogue of the scorpion toxin HsTX1 as a potential therapeutic for autoimmune diseases. Sci Rep 4:4509. doi:10.1038/srep04509

  63. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

  64. Martin-Eauclaire MF, Bougis PE (2012) Potassium channels blockers from the venom of Androctonus mauretanicus mauretanicus. J Toxicol 2012:103608. doi:10.1155/2012/103608

  65. Sandhiya S, Dkhar SA (2009) Potassium channels in health, disease & development of channel modulators. Indian J Med Res 29(3):223–232

    Google Scholar 

  66. Gairí M, Romi R, Fernández I, Rochat H, Martin-Eauclaire MF, Van Rietschoten J, Pons M, Giralt E (1997) 3D structure of kaliotoxin: is residue 34 a key for channel selectivity? J Pept Sci 3(4):314–319

    Article  Google Scholar 

  67. Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440(7086):959–962

    Article  CAS  Google Scholar 

  68. Korukottu J, Schneider R, Vijayan V, Lange A, Pongs O, Becker S, Baldus M, Zweckstetter M (2008) High-resolution 3D structure determination of kaliotoxin by solid-state NMR spectroscopy. PLoS One 3(6). doi: 10.1371/journal.pone.0002359

  69. Sansom MS, Shrivastava IH, Bright JN, Tate J, Capener CE, Biggin PC (2002) Potassium channels: structures, models, simulations. Biochim Biophys Acta 1565(2):294–307

    Article  CAS  Google Scholar 

  70. Cui M, Shen J, Briggs JM, Luo X, Tan X, Jiang H, Chen K, Ji R (2001) Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel. Biophys J 80(4):1659–1669

    Article  CAS  Google Scholar 

  71. Goldstein SA, Pheasant DJ, Miller C (1994) The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron 12(6):1377–1388

  72. Stampe P, Kolmakova-Partensky L, Miller C (1994) Intimations of potassium channel structure from a complete functional map of the molecular surface of charybdotoxin. Biochemistry 33(2):443–450

    Article  CAS  Google Scholar 

  73. Fu W, Cui M, Briggs JM, Huang X, Xiong B, Zhang Y, Luo X, Shen J, Ji R, Jiang H, Chen K (2002) Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels. Biophys J 83(5):2370–2385

    Article  CAS  Google Scholar 

  74. Yi H, Qiu S, Wu Y, Li W, Wang B (2011) Differential molecular information of maurotoxin peptide recognizing IKCa and Kv1.2 channels explored by computational simulation. BMC Struct Biol 11:3. doi:10.1186/1472-6807-11-3

  75. Kunqian Y, Wei F, Hong L, Xiaomin L, Kai XC, Jianping D, Jianhua S, Hualiang J (2004) Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel. Biophys J 86(6):3542–3555

    Article  Google Scholar 

  76. Martínez F, Muñoz-Garay C, Gurrola G, Darszon A, Possani LD, Becerril B (1998) Site directed mutants of noxiustoxin reveal specific interactions with potassium channels. FEBS Lett 429(3):381–384

  77. Mullmann TJ, Spence KT, Schroeder NE, Fremont V, Christian EP, Giangiacomo KM (2001) Insights into alpha-K toxin specificity for K+ channels revealed through mutations in noxiustoxin. Biochemistry 40(37):10987–10997

    Article  CAS  Google Scholar 

  78. Mouhat S, Visan V, Ananthakrishnan S, Wulff H, Andreotti N, Grissmer S, Darbon H, De Waard M, Sabatier JM (2005) K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochem J 385:95–104

  79. Chen R, Robinson A, Gordon D, Chung SH (2011) Modeling the binding of three toxins to the voltage-gated potassium channel (Kv1.3). Biophys J 101(11):2652–2660

  80. Chen R, Chung SH (2013) Molecular dynamics simulations of scorpion toxin recognition by the Ca2+-activated potassium channel KCa3.1. Biophys J 105(8):1829–1837

  81. Friedman R (2011) Ions and the protein surface revisited: extensive molecular dynamics simulations and analysis of protein structures in alkali-chloride solutions. J Phys Chem B 115(29):9213–9223

    Article  CAS  Google Scholar 

  82. Mutter M, Maser F, Altmann KH, Toniolo C, Bonora GM (1985) Sequence dependence of secondary structure formation: conformational studies of host–guest peptides in alpha-helix and beta-structure supporting media. Biopolymers 24:1057–1074

  83. Dado GP, Gellman SH (1993) Redox control of secondary in a designed peptide. J Am Chem Soc 115:12609–12610

    Article  CAS  Google Scholar 

  84. Bergeron ZL, Bingham JP (2012) Scorpion toxins specific for potassium (K+) channels: a historical overview of peptide bioengineering. Toxins 4(11):1082–1119

  85. Fajloun Z, Ferrat G, Carlier E, Fathallah M, Lecomte C, Sandoz G, di Luccio E, Mabrouk K, Legros C, Darbon H, Rochat H, Sabatier JM, De Waard M (2000) Synthesis, 1H NMR structure, and activity of a three-disulfide-bridged maurotoxin analog designed to restore the consensus motif of scorpion toxins. J Biol Chem 275(18):13605–13612

  86. Ferrat G, Bernard C, Fremont V, Mullmann TJ, Giangiacomo KM, Darbon H (2001) Structural basis for alpha-K toxin specificity for K+ channels revealed through the solution 1H NMR structures of two noxiustoxin-iberiotoxin chimeras. Biochemistry 40(37):10998–11006

  87. Lina C, Lee L (2003) A two-ionic-parameter approach for ion activity coefficients of aqueous electrolyte solutions. Fluid Phase Equilib 205(1):69–88

    Article  Google Scholar 

  88. Uejio JS, Schwartz CP, Duffin AM, Drisdell WS, Cohen RC, Saykally RJ (2008) Characterization of selective binding of alkali cations with carboxylate by X-ray absorption spectroscopy of liquid microjets. Proc Natl Acad Sci USA 105(19):6809–6812

  89. Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128(2–3):95–104

    Article  CAS  Google Scholar 

  90. Yang Z, Liu XJ, Chen C, Halling PJ (2010) Hofmeister effects on activity and stability of alkaline phosphatase. Biochim Biophys Acta 1804(4):821–828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Stephan Grissmer for valuable comments. Funding: L.C. acknowledges grant 13-06181S from the Czech Science Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Khabiri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 684 kb)

Fig. S2

(GIF 34 kb)

High-resolution image (TIFF 5484 kb)

Fig. S3

(GIF 38 kb)

High-resolution image (TIFF 5484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikouee, A., Khabiri, M. & Cwiklik, L. Scorpion toxins prefer salt solutions. J Mol Model 21, 287 (2015). https://doi.org/10.1007/s00894-015-2822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2822-y

Keywords

Navigation