Skip to main content

Advertisement

Log in

Artocarpus altilis CG-901 alters critical nodes in the JH1-kinase domain of Janus kinase 2 affecting upstream JAK/STAT3 signaling

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

As a key step in achieving low-cost, easily accessible anti-cancer therapy for low- and middle-income countries, we recently established the scientific basis for the folkloric use of Artocarpus altilis for the treatment of cancer by investigating the geranyl dihydrochalcone (CG-901) content and its interference with signal transducer and activator of transcription 3 (STAT3) phosphorylation and blockage of further downstream signaling. In the current study, the CG-901 upstream target was queried by chemical fingerprinting similarity assessment, semi-empirical (PM6ESCF) QMMM and molecular dynamics (MD) simulation. Moderate (∼0.4) to high (∼0.7) Tanimoto scores were found when the CG-901 scaffold was compared to ligands co-crystallized with Janus kinases (JAK) 1–3. High negative energy values were obtained when the CG-901 was treated semi-empirically (PM6ESCF) within the classical field of JAK (1–3). Multiple nanosecond MD simulations showed that CG-901 did not cause any large structural perturbations in the nucleotide-binding, activation and catalytic loops within the kinase (JH1) domain of JAK (1–3); however, it reduced the energy required to attain metastability along the path to energy minima conformation. In comparison to JAK1 and Apo-state JAK2, JAK2-bound CG-901 exhibited a highly re-organized key intra-domain protein network; indicating atomic level interference with inter-residue communication. In conclusion, CG-901 isolated from A. altilis represents a broad-spectrum JAK inhibitor, which may underlie the mechanism of STAT3 phosphorylation blockage.

Upper panel Janus kinase 2 upstream signaling pathway. Lower panel Apo-JAK2 (left) and CG-901-bound JAK2 (right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–d
Fig. 3a–c
Fig. 4

Similar content being viewed by others

References

  1. Andre N, Banavali S, Snihur Y, Pasquier E (2013) Has the time come for metronomics in low-income and middle-income countries? The Lancet. Oncology 14:e239–e248

    Google Scholar 

  2. Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract: Int J Kuwait Univ Health Sci Centre 14(Suppl 1):35–48

    Article  Google Scholar 

  3. Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30:679–692

    Article  CAS  Google Scholar 

  4. Stritzker J, Szalay AA (2013) Single-agent combinatorial cancer therapy. Proc Natl Acad Sci USA 110:8325–8326

    Article  CAS  Google Scholar 

  5. Chang-Yew Leow C, Gerondakis S, Spencer A (2013) MEK inhibitors as a chemotherapeutic intervention in multiple myeloma. Blood Cancer J 3, e105

    Article  CAS  Google Scholar 

  6. Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363:301–304

    Article  CAS  Google Scholar 

  7. Jeon YJ, Jung SN, Chang H, Yun J, Lee CW, Lee J, Choi S, Nash O, Han DC, Kwon BM (2015)Artocarpus altilis (Parkinson) Fosberg extracts and geranyl dihydrochalcone inhibit STAT3 activity in prostate cancer DU145 cells. Phytother Res 29:749–756

    Article  CAS  Google Scholar 

  8. Tulunay A, Dozmorov MG, Ture-Ozdemir F, Yilmaz V, Eksioglu-Demiralp E, Alibaz-Oner F, Ozen G, Wren JD, Saruhan-Direskeneli G, Sawalha AH, Direskeneli H (2015) Activation of the JAK/STAT pathway in Behcet’s disease. Genes Immun 16:176

    Article  CAS  Google Scholar 

  9. Pinz S, Unser S, Brueggemann S, Besl E, Al-Rifai N, Petkes H, Amslinger S, Rascle A (2014) The synthetic alpha-bromo-2′,3,4,4′-tetramethoxychalcone (alpha-Br-TMC) inhibits the JAK/STAT signaling pathway. PLoS One 9, e90275

    Article  Google Scholar 

  10. Looyenga BD, Hutchings D, Cherni I, Kingsley C, Weiss GJ, Mackeigan JP (2012) STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma. PLoS One 7, e30820

    Article  CAS  Google Scholar 

  11. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  Google Scholar 

  12. Hurley CA, Blair WS, Bull RJ, Chang C, Crackett PH, Deshmukh G, Dyke HJ, Fong R, Ghilardi N, Gibbons P, Hewitt PR, Johnson A, Johnson T, Kenny JR, Kohli PB, Kulagowski JJ, Liimatta M, Lupardus PJ, Maxey RJ, Mendonca R, Narukulla R, Pulk R, Ubhayakar S, van Abbema A, Ward SI, Waszkowycz B, Zak M (2013) Novel triazolo-pyrrolopyridines as inhibitors of Janus kinase 1. Bioorg Med Chem Lett 23:3592–3598

    Article  CAS  Google Scholar 

  13. Brasca MG, Gnocchi P, Nesi M, Amboldi N, Avanzi N, Bertrand J, Bindi S, Canevari G, Casero D, Ciomei M, Colombo N, Cribioli S, Fachin G, Felder ER, Galvani A, Isacchi A, Motto I, Panzeri A, Donati D (2015) Novel pyrrole carboxamide inhibitors of JAK2 as potential treatment of myeloproliferative disorders. Bioorg Med Chem 23:2387–2407

    Article  CAS  Google Scholar 

  14. Duan JJ, Lu Z, Jiang B, Yang BV, Doweyko LM, Nirschl DS, Haque LE, Lin S, Brown G, Hynes J Jr, Tokarski JS, Sack JS, Khan J, Lippy JS, Zhang RF, Pitt S, Shen G, Pitts WJ, Carter PH, Barrish JC, Nadler SG, Salter-Cid LM, McKinnon M, Fura A, Schieven GL, Wrobleski ST (2014) Discovery of pyrrolo[1,2-b]pyridazine-3-carboxamides as Janus kinase (JAK) inhibitors. Bioorg Med Chem Lett 24:5721–5726

    Article  CAS  Google Scholar 

  15. Molecular Operating Environment (MOE) (2015) Chemical Computing Group, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

  16. Heifets A, Lilien RH (2010) LigAlign: flexible ligand-based active site alignment and analysis. J Mol Graph Model 29:93–101

    Article  CAS  Google Scholar 

  17. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  Google Scholar 

  18. Florová P, Sklenovsky P, Banáš P, Otyepka M (2010) Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact. J Chem Theory Comput 6:3569–3579

    Article  Google Scholar 

  19. Gotz AW, Clark MA, Walker RC (2014) An extensible interface for QM/MM molecular dynamics simulations with AMBER. J Comput Chem 35:95–108

    Article  Google Scholar 

  20. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  21. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145

    Article  CAS  Google Scholar 

  22. Berendsen HJCP, van Gunsteren JPM, DiNola WF, Haak AJR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  23. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  24. Van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1:173–185

    Article  Google Scholar 

  25. Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24:417–422

    Article  CAS  Google Scholar 

  26. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  27. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  Google Scholar 

  28. Wolfram Research (2014) MATHEMATICA. vol. version 10.0. Wolfram Research, Champaign, IL

  29. Li T, Froeyen M, Herdewijn P (2010) Insight into ligand selectivity in HCV NS5B polymerase: molecular dynamics simulations, free energy decomposition and docking. J Mol Model 16:49–59

    Article  Google Scholar 

  30. Omotuyi OI, Nagai J, Ueda H (2015) Lys39-lysophosphatidate carbonyl oxygen interaction locks LPA1 N-terminal cap to the orthosteric Site and partners Arg124 during receptor activation. Sci Rep 5:13343

    Article  CAS  Google Scholar 

  31. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA: protein complexes. Proc Natl Acad Sci USA 106:6620–6625

    Article  CAS  Google Scholar 

  32. Koukos PI, Glykos NM (2013) Grcarma: a fully automated task-oriented interface for the analysis of molecular dynamics trajectories. J Comput Chem 34:2310–2312

    Article  CAS  Google Scholar 

  33. Jatiani SS, Cosenza SC, Reddy MV, Ha JH, Baker SJ, Samanta AK, Olnes MJ, Pfannes L, Sloand EM, Arlinghaus RB, Reddy EP (2010) A non-ATP-competitive dual inhibitor of JAK2 and BCR-ABL kinases: elucidation of a novel therapeutic spectrum based on substrate competitive inhibition. Genes Cancer 1:331–345

    Article  CAS  Google Scholar 

  34. Antonysamy S, Hirst G, Park F, Sprengeler P, Stappenbeck F, Steensma R, Wilson M, Wong M (2009) Fragment-based discovery of JAK-2 inhibitors. Bioorg Med Chem Lett 19:279–282

    Article  CAS  Google Scholar 

  35. Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29:157–170

    Article  CAS  Google Scholar 

  36. Wang T, Duffy JP, Wang J, Halas S, Salituro FG, Pierce AC, Zuccola HJ, Black JR, Hogan JK, Jepson S, Shlyakter D, Mahajan S, Gu Y, Hoock T, Wood M, Furey BF, Frantz JD, Dauffenbach LM, Germann UA, Fan B, Namchuk M, Bennani YL, Ledeboer MW (2009) Janus kinase 2 inhibitors. Synth Charact Nov Polycycl Azaindole J Med Chem 52:7938–7941

    CAS  Google Scholar 

  37. Rathore RS, Sumakanth M, Reddy MS, Reddanna P, Rao AA, Erion MD, Reddy MR (2013) Advances in binding free energies calculations: QM/MM-based free energy perturbation method for drug design. Curr Pharm Des 19:4674–4686

    Article  CAS  Google Scholar 

  38. Leonard WJ, O’Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16:293–322

    Article  CAS  Google Scholar 

  39. Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, Harris CC, Herman JG (2001) SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 28:29–35

    CAS  Google Scholar 

  40. Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17:2497–2501

    Article  CAS  Google Scholar 

  41. Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE, Walter M, Burns CJ, Treutlein H, Wilks AF, Rossjohn J (2006) The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 107:176–183

    Article  CAS  Google Scholar 

  42. Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275–282

    Article  CAS  Google Scholar 

  43. Alicea-Velazquez NL, Boggon TJ (2011) The use of structural biology in Janus kinase targeted drug discovery. Curr Drug Targets 12:546–555

    Article  CAS  Google Scholar 

  44. West K (2009) CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr Opin Investig Drugs 10:491–504

    CAS  Google Scholar 

  45. Lin Q, Lai R, Chirieac LR, Li C, Thomazy VA, Grammatikakis I, Rassidakis GZ, Zhang W, Fujio Y, Kunisada K, Hamilton SR, Amin HM (2005) Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol 167:969–980

    Article  CAS  Google Scholar 

  46. Kumar N, Mishra J, Narang VS, Waters CM (2007) Janus kinase 3 regulates interleukin 2-induced mucosal wound repair through tyrosine phosphorylation of villin. J Biol Chem 282:30341–30345

    Article  CAS  Google Scholar 

  47. O’Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109(Suppl):S121–S131

    Article  Google Scholar 

  48. Park ES, Kim H, Suh JM, Park SJ, You SH, Chung HK, Lee KW, Kwon OY, Cho BY, Kim YK, Ro HK, Chung J, Shong M (2000) Involvement of JAK/STAT (Janus kinase/signal transducer and activator of transcription) in the thyrotropin signaling pathway. Mol Endocrinol 14:662–670

  49. Chen YW, Guo T, Shen L, Wong KY, Tao Q, Choi WW, Au-Yeung RK, Chan YP, Wong ML, Tang JC, Liu WP, Li GD, Shimizu N, Loong F, Tse E, Kwong YL, Srivastava G (2015) Receptor-type tyrosine-protein phosphatase kappa directly targets STAT3 activation for tumor suppression in nasal NK/T-cell lymphoma. Blood 125:1589–1600

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the H3Africa Bioinformatics Network (H3ABioNet) grant funded by NIH Common Fund Award/NHGRI (Grant Number U41HG006941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaposi Omotuyi.

Ethics declarations

Funding

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(MOV 8.61 mb)

Supplementary Fig. S1

Binding signature and dynamics of JAK3-JH1 CG-901 or 3QX bound states. a Free energy surface plots of Apo-JAK3 (I), JAK3-QUP (ii), and JAK3-CG-901 complex. b Upper plane) Representative low-energy conformation of 3QX (red stick)-JAK3 (blue cartoon) complex, green stick JAK3 residues interacting with 3QX (cyan stick). Lower plane) Representative low-energy conformation of CG-901 (green stick)-JAK3 (blue cartoon) complex; cyan stick represents the JAK3 residues interacting with CG-901 (green stick). c Line plots of χ1 (I, upper plane) and χ2 (I, lower plane) dihedral angle distribution of Tyr1007 along the trajectory, (ii upper plane) root mean square deviation of the nucleotide binding loop, (ii lower plane) catalytic loop, (iii, upper plane) activation loop during the trajectories. (iii, lower plane) center of mass distance between tyrosine 1007 and aspartate 1004 during the course of the simulation. d Cartoon representation of apo-JAK3 (I), 3QX-bound (ii), and CG-901-bound (iii) JAK3. Blue spheres and line (thickness represents weight) represent critical network. Lines plot are color coded: Red Apo-protein, Blue lines 3QX-bound JAK3, green lines represent CG-901-bound JAK3. (PDF 5.70 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nash, O., Omotuyi, O., Lee, J. et al. Artocarpus altilis CG-901 alters critical nodes in the JH1-kinase domain of Janus kinase 2 affecting upstream JAK/STAT3 signaling. J Mol Model 21, 280 (2015). https://doi.org/10.1007/s00894-015-2821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2821-z

Keywords

Navigation