Skip to main content
Log in

Design and theoretical study of 15 novel high energy density compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In order to seek the potential high energy density compounds (HEDCs) with excellent performance and satisfactory safety, some combination rules are presented and 15 HEDCs are designed and sifted, and followed by the properties predicting. From the results, HEDC-3, HEDC-4, HEDC-9, HEDC-10, HEDC-11, HEDC-12, HEDC-13, and HEDC-14 have good comprehensive properties. They are furoxan, fused ring or cage-type compounds, whose frame is composed of some single ring by single (double or multi) point addition. Their densities are over 1.95 g cm−3, and detonation velocities are over 9500 m s−1. Their BDEs are over 85 kJ mol−1, and the values of available free space (∆V) are lower than the ∆V of β-CL20 (∆V = 86). In view of the synthesis feasibility, the synthesis routes of HEDC-4, HEDC-9, HEDC-10, HEDC-12, HEDC-13, and HEDC-14 have been designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

References

  1. Östmark H (2006) High energy density materials (HEDM): overview, theory and synthetic efforts at FOI. New Trends in Research of Energetic Materials, Czech Republic, p 231

  2. Zhang Y, Shreeve JM (2011) Angew Chem Int Ed 50:935

    Article  CAS  Google Scholar 

  3. Goöbel M, Karaghiosoff K, Klapötke TM, Piercey DG, Stierstorfer J (2010) J Am Chem Soc 132:17216

    Article  Google Scholar 

  4. Wang R, Gao H, Ye C, Twamley B, Shreeve JM (2007) Inorg Chem 46:932

    Article  CAS  Google Scholar 

  5. Gao Y, Ye C, Twamley B, Shreeve JM (2006) Chem Eur J 12:9010

    Article  CAS  Google Scholar 

  6. Xue H, Shreeve JM (2005) Adv Mater 17:2142

    Article  CAS  Google Scholar 

  7. Xue H, Arritt SW, Twamley B, Shreeve JM (2004) Inorg Chem 43:7972

    Article  CAS  Google Scholar 

  8. Hammerl A, Klapötke TM, Nöth H, Warchhold M (2001) Inorg Chem 40:3570

    Article  CAS  Google Scholar 

  9. Zhang MX, Eaton PE, Gilardi R (2000) Angew Chem Int Ed 39:401

    Article  CAS  Google Scholar 

  10. Eaton PE, Gilardi RL, Zhang MX (2000) Adv Mater 12:1143

    Article  CAS  Google Scholar 

  11. Sikder AK, Maddala G, Agrawal JP, Singh H (2001) J Hazard Mater A84:1

    Google Scholar 

  12. Ovchinnikov IV, Makhova NN, Khmel’nitskii LI, Kuz’min VS, Akimova LN, Pepekin VI (1998) Dokl Akad Nauk 359:499

    CAS  Google Scholar 

  13. Vedachalam M, Ramakrishnan VT, Boyer JH (1991) J Org Chem 56:3413

    Article  CAS  Google Scholar 

  14. Lian P, Lai WP, Wang BZ, Ge ZX, Zhu WL, Xue YQ (2009) Acta Chim Sinica 67:2343

    CAS  Google Scholar 

  15. Wei T, Zhu WL, Zhang XW, Li YF, Xiao HM (2009) J Phy Chem A 113:9404

    Article  CAS  Google Scholar 

  16. Kerth J, Lobbecke S (2002) Propell Explos Pyrot 27:111

    Article  CAS  Google Scholar 

  17. Chavez DE, Hiskey MA, Gilardi RD (2000) Angew Chem Int Ed 39:1791

    Article  CAS  Google Scholar 

  18. Huynh MHV, Hiskey MA, Hartline EL, Montoya DP, Gilardi RD (2004) Angew Chem Int Ed 43:4924

    Article  CAS  Google Scholar 

  19. Neutz J, Grosshardt O, Schaufele S, Schuppler H, Schweikert W (2003) Propell Explos Pyrot 28:181

    Article  CAS  Google Scholar 

  20. Huynh MHV, Hiskey MA, Pollard CJ, Montoya DP, Hartline EL, Gilardi RD (2004) J Energy Mater 22:217

    Article  CAS  Google Scholar 

  21. Churakov AM, Smirnov OY, Ioffe SL, Strelenko YA, Tartakovsky VA (2002) Eur J Org Chem 14:2342

    Article  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  24. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing

    Google Scholar 

  25. Xiao HM (2004) Structures and properties of energetic compounds. National Defence Industry Press, Beijing

    Google Scholar 

  26. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062

    Article  CAS  Google Scholar 

  27. Zhang J, Xiao HM (2002) J Chem Phys 116:10674

    Article  CAS  Google Scholar 

  28. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) J Phys Chem A 110:5929

    Article  CAS  Google Scholar 

  29. Wang GX, Gong XD, Xiao HM (2008) Chin J Chem 26:1357

    Article  CAS  Google Scholar 

  30. Wang GX, Gong XD, Liu Y, Xiao HM (2010) Int J Quantum Chem 110:1691

    CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford, CT

  32. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095

    Article  CAS  Google Scholar 

  33. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2007) J Hazard Mater 141:280

    Article  CAS  Google Scholar 

  34. Rice BM, Hare JJ, Byrd EFC (2007) J Phys Chem A 111:10874

    Article  CAS  Google Scholar 

  35. Atkins PW (1982) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  36. Politzer P, Murray JS, Grice ME, Desalvo M, Edward M (1997) Mol Phys 91:923

    Article  CAS  Google Scholar 

  37. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

    Article  CAS  Google Scholar 

  38. Wu X (1986) In: Proceedings of the 8th Symposium (International) on Detonation. Albuquerque, p 796

  39. Mader CL (1987) Technical Report ISPBKW

  40. Owens FJ (1996) J Mol Struct THEOCHEM 370:11

    Article  CAS  Google Scholar 

  41. Rice BM, Sahu S, Owens FJ (1996) J Mol Struct THEOCHEM 583:69

    Article  Google Scholar 

  42. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) J Mol Mod 17:2569

    Article  Google Scholar 

  43. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Mod 16:895

    Article  Google Scholar 

  44. Politzer P, Murray JS (2014) J Mol Mod 20:2223

    Article  Google Scholar 

  45. Byrd EFC, Rice BM (2006) J Phys Chem A 110:1005

    Article  CAS  Google Scholar 

  46. Meyer R (1987) Explosives, 3rd edn. Wiley-VCH, Weinheim, p 452

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Wp., Lian, P., Liu, Yz. et al. Design and theoretical study of 15 novel high energy density compounds. J Mol Model 20, 2479 (2014). https://doi.org/10.1007/s00894-014-2479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2479-y

Keywords

Navigation