Skip to main content

Advertisement

Log in

Triptan partition in model membranes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we report a molecular dynamics simulations study of protonated triptans, sumatriptan and naratriptan, in a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC). The simulations were carried out at two concentrations for each drug. Our results show partition between the lipid head-water interphase and water phase for both triptans, with increasing access to the water phase with increasing concentrations. The triptans were stabilized at the interphase through different specific interactions with the POPC bilayer such as hydrogen bonds, salt bridges, and cation-π. Besides, sumatriptan and naratriptan protonated molecules have no access to the hydrophobic region of the bilayer at the studied conditions. Similar results were found for both drugs, however protonated naratriptan shows slightly higher affinity for the water phase. This behavior was attributed to the bulky lateral amino group in its structure under the studied conditions (drugs were originally placed at the water phase). This work represents a first insight to the comprehensive understanding of triptan partition in model membranes.

Snapshot of the bilayer containing protonated naratriptan, at high concentration: POPC lipids are shown in light brown (N and P atoms represented by violet and orange spheres, respectively) and naratriptan in green. Water molecules were removed for visualization purposes. Besides, two pairs of lipid-naratriptan were highlighted in blue and red respectively, indicating specific interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Langemark M, Olesen J, Poulsen DL, Bech P (1988) Clinical characterization of patients with chronic tension headache. Headache 28:590–596

    Article  CAS  Google Scholar 

  2. Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine - current understanding and treatment. N Engl J Med 346:257–270

    Article  CAS  Google Scholar 

  3. Hamel E (2007) Serotonin and migraine: biology and clinical implications. Cephalalgia 27:1295–1300

    Article  Google Scholar 

  4. Goadsby PJ (2000) The pharmacology of headache. Prog Neurobiol 62:509–525

    Article  CAS  Google Scholar 

  5. Humphrey PPA (2008) The discovery and development of the triptans, a major therapeutic breakthrough. Headache 48:685–687

    Article  Google Scholar 

  6. Humphrey PPA, Feniuk W, Marriott AS, Tanner RJN, Jackson MR, Tucker ML (1991) Preclinical studies on the anti-migraine drug, sumatriptan. Eur Neurol 31:282–290

    Article  CAS  Google Scholar 

  7. Kaube H, Hoskin KL, Goadsby PJ (1993) Inhibition by sumatriptan of central trigeminal neurons only after blood–brain barrier disruption. Br J Pharmacol 109:788–792

    Article  CAS  Google Scholar 

  8. Cady RK (2001) Looking forward: the expanding utility of sumatriptan and naratriptan. Cephalalgia 21:35–38

    Article  Google Scholar 

  9. Peroutka SJ (1990) Sumatriptan in acute migraine: pharmacology and review of world experience. Headache 30:554–560

    Article  Google Scholar 

  10. Buzzi MG, Moskowitz MA, Peroutka SJ, Byun B (1991) Further characterization of the putative 5-HT receptor which mediates blockade of neurogenic plasma extravasation in rat dura mater. Br J Pharmacol 103:1421–1428

    Article  CAS  Google Scholar 

  11. Humphrey PPA, Feniuk W, Perren MJ, Beresford IJM, Skingle M, Whalley ET (1990) The neuropharmacology of serotonin. Ann N Y Acad Sci 600:587–598

    Article  CAS  Google Scholar 

  12. Humphrey PPA, Goadsby PJ (1994) Controversies in headache. The mode of action of sumatriptan is vascular? A debate. Cephalalgia 14:401–410

    Article  CAS  Google Scholar 

  13. Saxena PR, Tfelt-Hansen P (2001) Success and failure of triptans. J Headache Pain 2:3–11

    Article  CAS  Google Scholar 

  14. Bigal ME, Bordini CA, Antoniazzi AL, Speciali JG (2003) The triptan formulations. A critical evaluation. Arq Neuropsiquiatr 31:313–320

    Article  Google Scholar 

  15. Dodick DW, Silberstein S, Dahlof CGH (2002) Is there a preferred triptan? Headache 42:1–7

    Article  Google Scholar 

  16. Goadsby PJ (1998) 5-HT1B/1D agonists in migraine: comparative pharmacology and its therapeutic implications. CNS Drugs 10:271–286

    Article  CAS  Google Scholar 

  17. Stark S, Spierings ELH, McNeal S, Putnam GP, Bolden-Watson CP, O'Quinn S (2000) Naratriptan efficacy in migraineurs who respond poorly to oral sumatriptan. Headache 40:513–520

    Article  CAS  Google Scholar 

  18. Lambert GA (2005) Preclinical neuropharmacology of naratriptan. CNS Drug Rev 11:289–316

    Article  CAS  Google Scholar 

  19. Connor HE (2001) Building on the sumatriptan experience: the development of naratriptan. Cephalalgia 21:32–34

    Article  Google Scholar 

  20. Adelman JU, Lipton RB, Ferrari MD, Diener HC, McCarroll KA, Vandormael K, Lines CR (2001) Comparison of rizatriptan and other triptans on stringent measures of efficacy. Neurology 57:1377–1383

    Article  CAS  Google Scholar 

  21. Edvinsson L, Tfelt-Hansen P (2008) The blood–brain barrier in migraine treatment. Cephalalgia 28:1245–1258

    Article  CAS  Google Scholar 

  22. Wood I, Pickholz M (2013) Concentration effects of sumatriptan on the properties of model membranes by molecular dynamics simulations. Eur Biophys J 42:833–841

    Article  CAS  Google Scholar 

  23. Wojnar-Horton RE, Hackett LP, Yapp P, Dusci LJ, Paech M, Ilett KF (1996) Distribution and excretion of sumatriptan in human milk. Br J Clin Pharmacol 41:217–221

    Article  CAS  Google Scholar 

  24. Imitrex Product Monograph (2013), Glaxo Smith-Kline, Brentford

  25. Amerge Product Monograph (2014), Glaxo Smith-Kline, Brentford

  26. Selivonchick DP, Roots BI (1977) Lipid and fatty acyl composition of rat brain capillary endothelia isolated by a new technique. Lipids 12:165–169

    Article  CAS  Google Scholar 

  27. Fischer H, Gottschlich R, Seelig A (1998) Blood–brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol 165:201–211

    Article  CAS  Google Scholar 

  28. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comp Physiol 151:283–312

    Article  Google Scholar 

  29. Feller S, MacKerell AD Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515

    Article  CAS  Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  31. Martínez L, Andrade R, Birgin E, Martinez J (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  Google Scholar 

  32. Wood I, Martini MF, Pickholz M (2013) Similarities and differences of serotonin and its precursors in their interactions with model membranes studied by molecular dynamics simulation. J Mol Struct 1045:124–130

    Article  CAS  Google Scholar 

  33. Becke A (1993) Density functional thermochemistry III The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  34. Frisch M, Trucks G, Schlegel H et al. (2003) Gaussian03, Revision B.05. Pople, Gaussian, Inc, 2003 Pittsburgh, PA.

  35. Singh U, Kollman P (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  36. Kim K, Jordan KD (1994) Comparison of density functional and MP2 calculations on the water monomer and dimer. J Phys Chem 9:10089–10094

    Article  Google Scholar 

  37. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  38. Feller S, Zhang Y, Pastor R, Brooks B (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  39. Tuckerman M, Berne B, Martyna GJ (1991) Molecular dynamics algorithm for multiple time scales: systems with long range forces. J Chem Phys 94:6811–6815

    Article  CAS  Google Scholar 

  40. Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  41. Kučerka N, Liu Y, Chu N, Petrache NI, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88:2626–2637

    Article  Google Scholar 

  42. Marrink S-J, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  CAS  Google Scholar 

  43. Martini MF, Disalvo EA, Pickholz M (2012) Nicotinamide and picolinamide in phospholipid monolayers. Int J Quantum Chem 112:3289–3295

    Article  Google Scholar 

  44. Mecozzi S, West A, Dougherty D (1996) Cation − π interactions in simple aromatics: electrostatics provides a predictive tool. J Am Ceram Soc 118:2307–2308

    CAS  Google Scholar 

  45. Petersen F, Jensen M, Nielsen C (2005) Interfacial tryptophan residues: a role for the cation-π effect? Biophys J 89:3985–3996

    Article  CAS  Google Scholar 

  46. Barlow DJ, Thornton JM (1983) Ion-pairs in proteins. J Mol Biol 168:867–885

    Article  CAS  Google Scholar 

  47. Kumar S, Nussinov R (1999) Salt bridge stability in monomeric proteins. J Mol Biol 293:1241–1255

    Article  CAS  Google Scholar 

  48. Aliste MP, MacCallum JL, Tieleman DP (2003) Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation−π interactions. Biogeosciences 42:8976–8987

    CAS  Google Scholar 

  49. Pascual J, Muñoz P (2005) Correlation between lipophilicity and triptan outcomes. Headache 45:3–6

    Article  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported with funds from Agencia Nacional de Promoción Científica y Técnica (PICT (2008/310), associated to Project PRH 2007 N°71). M.P. is a member of the Research Career from Consejo Nacional de Investigaciones Científicas y Técnicas (R. Argentina). I.W. is a Ph. D. fellow of the Agencia Nacional de Promoción Científica y Técnica (R. Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Pickholz.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, I., Pickholz, M. Triptan partition in model membranes. J Mol Model 20, 2463 (2014). https://doi.org/10.1007/s00894-014-2463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2463-6

Keywords

Navigation