Skip to main content
Log in

Structures of TraI in solution

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Bacterial conjugation, a DNA transfer mechanism involving transport of one plasmid strand from donor to recipient, is driven by plasmid-encoded proteins. The F TraI protein nicks one F plasmid strand, separates cut and uncut strands, and pilots the cut strand through a secretion pore into the recipient. TraI is a modular protein with identifiable nickase, ssDNA-binding, helicase and protein–protein interaction domains. While domain structures corresponding to roughly 1/3 of TraI have been determined, there has been no comprehensive structural study of the entire TraI molecule, nor an examination of structural changes to TraI upon binding DNA. Here, we combine solution studies using small-angle scattering and circular dichroism spectroscopy with molecular Monte Carlo and molecular dynamics simulations to assess solution behavior of individual and groups of domains. Despite having several long (>100 residues) apparently disordered or highly dynamic regions, TraI folds into a compact molecule. Based on the biophysical characterization, we have generated models of intact TraI. These data and the resulting models have provided clues to the regulation of TraI function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Certain commercial equipment, instruments, materials, suppliers, or software are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

References

  1. Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. Methods Mol Biol 532:397–411

    Article  CAS  Google Scholar 

  2. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217. doi:10.1002/jcc.540040211

    Article  CAS  Google Scholar 

  3. Cheng Y, McNamara DE, Miley MJ, Nash RP, Redinbo MR (2011) Functional characterization of the multidomain f plasmid trai relaxase-helicase. J Biol Chem 286(14):12670–12682

    Article  CAS  Google Scholar 

  4. Clark NJ, Zhang H, Krueger S, Lee HJ, Ketchem RR, Kerwin B, Kanapuram SR, Treuheit MJ, McAuley A, Curtis JE (2013) Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints. J Phys Chem B 117:14029–14038

    Article  CAS  Google Scholar 

  5. Curtis JE, Raghunandan S, Nanda H, Krueger S (2012) Sassie: a program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints. Comput Phys Commun 183(2):382–389

    Article  CAS  Google Scholar 

  6. Datta S, Larkin C, Schildbach JF (2003) Structural insights into single-stranded dna binding and cleavage by f factor trai. Structure 11(11):1369–1379

    Article  CAS  Google Scholar 

  7. De La Cruz F, Frost LS, Meyer RJ, Zechner EL (2010) Conjugative dna metabolism in gram-negative bacteria. FEMS Microbiol Rev 34(1):18–40

    Article  Google Scholar 

  8. Dostal L, Schildbach JF (2010) Single-stranded dna binding by f trai relaxase and helicase domains is coordinately regulated. J Bacteriol 192(14):3620–3628

    Article  CAS  Google Scholar 

  9. Dostal L, Shao S, Schildbach JF (2011) Tracking f plasmid trai relaxase processing reactions provides insight into f plasmid transfer. Nucleic Acids Res 39(7):2658–2670

    Article  CAS  Google Scholar 

  10. Fukada H, Ohtsubo E (1997) Roles of trai protein with activities of cleaving and rejoining the single-stranded dna in both initiation and termination of conjugal dna transfer. Genes Cells 2(12):735–751

    Article  Google Scholar 

  11. Garnier J, Osguthrope DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120

    Article  CAS  Google Scholar 

  12. Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New York

    Google Scholar 

  13. Guogas LM, Kennedy SA, Lee JH, Redinbo MR (2009) A novel fold in the trai relaxase-helicase c-terminal domain is essential for conjugative dna transfer. J Mol Biol 386(2):554–568

    Article  CAS  Google Scholar 

  14. Heidorn DB, Trewhella J (1988) Comparison of the crystal and solution structures of calmodulin and troponin c. Biochemistry 27:909–915

    Article  CAS  Google Scholar 

  15. Hirose S, Shimizu K, Kanai S, Kuroda Y, Noguchi T (2007) Poodle-l: a two-level svm prediction system for reliably predicting long disordered regions. Bioinformatics 23(16):2046–2053

    Article  CAS  Google Scholar 

  16. Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233(1):123–138

    Article  CAS  Google Scholar 

  17. Howard MT, Nelson WC, Matson SW (1995) Stepwise assembly of a relaxosome at the f plasmid origin of transfer. J Biol Chem 270(47):28381–28386

    Article  CAS  Google Scholar 

  18. Humphrey W, Dalke A, Schulten K (1996) VMD—Visual Molecular Dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  19. Inamoto S, Fukada H, Abo T, Ohtsubo E (1994) Site- and strand-specific nicking at orit of plasmid r100 in a purified system: enhancement of the nicking activity of trai (helicase i) with tray and ihf. J Biochem (Tokyo) 116(4):838–844

    CAS  Google Scholar 

  20. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology-expanding the frontier while avoiding the pitfalls. Protein Sci 19(4):642–657. doi:10.1002/pro.351

    Article  CAS  Google Scholar 

  21. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  Google Scholar 

  22. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  23. Karl W, Bamberger M, Zechner EL (2001) Transfer protein tray of plasmid r1 stimulates trai-catalyzed orit cleavage in vivo. J Bacteriol 183(3):909–914

    Article  CAS  Google Scholar 

  24. Kelly LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the phyre server. Nat Protoc 4:363–371

    Article  Google Scholar 

  25. Kline SR (2006) Reduction and analysis of sans and usans data using igor pro. J Appl Crystallogr 39:895–900

    Article  CAS  Google Scholar 

  26. Krueger S, Gorshkova I, Brown J, Hoskins J, McKenney KH, Schwarz FP (1998) Determination of the conformations of camp receptor protein and its t127l, s128a mutant with and without camp from small angle neutron scattering measurements. J Biol Chem 273:20001–20006

    Article  CAS  Google Scholar 

  27. Lang S, Gruber K, Mihajlovic S, Arnold R, Gruber CJ, Steinlechner S, Jehl MA, Rattei T, Frohlich KU, Zechner EL (2010) Molecular recognition determinants for type iv secretion of diverse families of conjugative relaxases. Mol Microbiol 78(6):1539–1555

    Article  CAS  Google Scholar 

  28. Larkin C, Datta S, Harley MJ, Anderson BJ, Ebie A, Hargreaves V, Schildbach JF (2005) Inter- and intramolecular determinants of the specificity of single-stranded dna binding and cleavage by the f factor relaxase. Structure 13(10):1533–1544

    Article  CAS  Google Scholar 

  29. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    Article  CAS  Google Scholar 

  30. Lu J, Frost LS (2005) Mutations in the c-terminal region of tram provide evidence for in vivo tram-trad interactions during f-plasmid conjugation. J Bacteriol 187(14):4767–4773

    Article  CAS  Google Scholar 

  31. Lu J, Edwards RA, Wong JJ, Manchak J, Scott PG, Frost LS, Glover JN (2006) Protonation-mediated structural flexibility in the f conjugation regulatory protein, tram. EMBO J 25(12):2930–2939

    Article  CAS  Google Scholar 

  32. Lu J, Edwards RA, Manchak J, Frost LS, Glover JN (2008) Structural basis of specific trad-tram recognition during f plasmid-mediated bacterial conjugation. Mol Microbiol 70(1):89–99

    Article  CAS  Google Scholar 

  33. MacKerell AD Jr, Bashford D, Bellott M Jr, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  34. Matson SW, Ragonese H (2005) The f-plasmid trai protein contains three functional domains required for conjugative dna strand transfer. J Bacteriol 187(2):697–706

    Article  CAS  Google Scholar 

  35. Matson SW, Nelson WC, Morton BS (1993) Characterization of the reaction product of the orit nicking reaction catalyzed by escherichia coli dna helicase i. J Bacteriol 175(9):2599–2606

    CAS  Google Scholar 

  36. Mihajlovic S, Lang S, Sut MV, Strohmaier H, Gruber CJ, Koraimann G, Cabezon E, Moncalian G, De La Cruz F, Zechner EL (2009) Plasmid r1 conjugative dna processing is regulated at the coupling protein interface. J Bacteriol 191(22):6877–6887

    Article  CAS  Google Scholar 

  37. Nelson WC, Howard MT, Sherman JA, Matson SW (1995) The tray gene product and integration host factor stimulate escherichia coli dna helicase i-catalyzed nicking at the f plasmid orit. J Biol Chem 270(47):28374–28380

    Article  CAS  Google Scholar 

  38. Nielsen JE, Noergaard Toft K, Snakenborg D, Jeppesen MG, Jacobsen JK, Vestergaard B, Kutter JP, Arleth L (2009) Bioxtas raw, a software program for high-throughput automated small-angle x-ray scattering data reduction and preliminary analysis. J Appl Crystallogr 42:959–964

    Article  CAS  Google Scholar 

  39. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  CAS  Google Scholar 

  40. Prevelige P, Fasman GD (1989) Chou-Fasman prediction of the secondary structure of proteins: the Chou-Fasman-Prevelige algorithm, chap. 9. Plenum, New York, pp 391–416

    Google Scholar 

  41. Provencher SW, Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37

    Article  CAS  Google Scholar 

  42. Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202:865–884

    Article  CAS  Google Scholar 

  43. Redzej A, Ilangovan A, Lang S, Gruber CJ, Topf M, Zangger K, Zechner EL, Waksman G (2013) Structure of a translocation signal domain mediating conjugative transfer by type iv secretion systems. Mol Microbiol 89(2):324–333. doi:10.1111/mmi.12275

    Article  CAS  Google Scholar 

  44. Shimizu K, Hirose S, Noguchi T (2007) Poodle-s: web application for predicting protein disorder by using physicochemical features and reduced amino acid set of a positioin-specific matrix. Bioinformatics 23(17):2337–2338

    Article  CAS  Google Scholar 

  45. Stern JC, Schildbach JF (2001) Dna recognition by f factor trai36: highly sequence-specific binding of single-stranded dna. Biochemistry 40(38):11586–11595

    Article  CAS  Google Scholar 

  46. Street LM, Harley MJ, Stern JC, Larkin C, Williams SL, Dohm JA, Schildbach JF (2003) Subdomain organization and catalytic residues of the f factor trai relaxase domain. Biochim Biophys Acta 1646(1–2):86–99

    Article  CAS  Google Scholar 

  47. Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503

    Article  Google Scholar 

  48. Svergun DI, Barberato C, Koch MHJ (1995) Crysol—a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  49. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 34:S3–S10

    Article  Google Scholar 

  50. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M (2006) Sex and virulence in escherichia coli: an evolutionary perspective. Mol Microbiol 60(5):1136–1151

    Article  CAS  Google Scholar 

  51. Wright NT, Majumdar A, Schildbach JF (2011) Chemical shift assignments for F-plasmid (381–569). Biomol NMR Assign 5(1):67–70

    Article  CAS  Google Scholar 

  52. Wright NT, Raththagala M, Hemmis CW, Edwards S, Curtis JE, Krueger S, Schildbach JF (2012) Solution structure and small angle scattering analysis of trai (381–569). Proteins 80(9):2250–2261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Institute of General Medical Sciences under grant number R01 GM61017, American Recovery and Reinvestment Act under grant number R01 GM61017, and the Dimitri V. d’Arbeloff fellowship. This work benefitted from CCP-SAS software developed through a joint Engineering and Physical Sciences Research Council (EP/K039121/1) and National Science Foundation (CHE-1265821) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Curtis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, N.J., Raththagala, M., Wright, N.T. et al. Structures of TraI in solution. J Mol Model 20, 2308 (2014). https://doi.org/10.1007/s00894-014-2308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2308-3

Keywords

Navigation