Skip to main content

Advertisement

Log in

A study of interaction potentials for H 2 adsorption in Single Walled Nano Tubes: a possible way to more realistic predictions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A comparative analysis of interaction potentials, classified according to the parametrization method, namely Lorentz-Berthelot rules, semi-empirical or ab initio calculations, found their energy depths to scale, respectively, to ca 30K, ca 40K, and ca 60K. We draw the Potential Energy Surfaces (PESs) for a hydrogen probe molecule inside a Carbon Nano-Tube (CNT): it is shown that the adsorption energy increases with the hard radius of the interaction potential and decreases as the CNT pore enlarges. This is valid just for low-medium pressures, when hydrogen repulsions are negligible. If not, adsorption is driven by H 2H 2 hard radius despite all other parameters. Monte Carlo (MC) simulations, following the Gibbs Ensemble (GE) in high density conditions, confirm that the thermodynamic equilibrium of an order-disorder phase transition show no changes throughout any of the studied potentials. We also analyse, in the Grand Canonical (GC) ensemble, the geometric and structural characteristics of square lattice bundles of Single Walled Nano Tubes (SWNTs) with regard to their influence on adsorption storage. To do so, we develop a method for independently simulate inner or outer adsorption in infinitely long nanotube lattice systems. Our results suggest a pressure range for convenient H 2 storage and enlighten the influence of CNT size on adsorption performance. In addition, larger CNTs are capable to host further hydrogen layers, but only at very high pressures.

Each SWNT has shown a different pressure range for convenient adsorptive storage, strongly affected by the type of potential employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Froudakixs, G E (2011). Mater Today, 14(7–8), 324–328.

    Article  Google Scholar 

  2. Iijima, S (1991). Nature, 354(6348), 56–58.

    Article  CAS  Google Scholar 

  3. Dillon, A C, Jones, K M, Bekkedahl, T A, Kiang, C H, Bethune, D S, Heben, M J (1997). Nature, 386(6623), 377–379.

    Article  CAS  Google Scholar 

  4. Karatepe, N, & Yuca, N (2011). Int J Hydrog Energy, 36(17), 11,467–11,473.

    Article  CAS  Google Scholar 

  5. Liu, C, & Cheng, H M (2005). J Phys D-Appl Phys, 38(14), R231–R252.

    Article  CAS  Google Scholar 

  6. Ioannatos, G E, & Verykios, X E (2010). Int J Hydrog Energy, 35(2), 622–628.

    Article  CAS  Google Scholar 

  7. Konstantakou, A, Steriotis, T A, Papadopoulos, G K, Kainourgiakis, M, Kikkinides, E S, Stubos, A K (2007). Appl Surf Sci, 253(13), 5715–5720.

    Article  CAS  Google Scholar 

  8. Nguyen, T X, Bae, J S, Wang, Y, Bhatia, S K (2009). Langmuir, 25(8), 4314–4319.

    Article  CAS  Google Scholar 

  9. Silvera, I F, & Goldman, V V (1978). J Chem Phys, 69(9), 4209–4213.

    Article  CAS  Google Scholar 

  10. Buch, V (1994). J Chem Phys, 100(10), 7610–7629.

    Article  CAS  Google Scholar 

  11. Steele, WA (1974). The Interaction of Gases with Solid Surfaces.

  12. Wang, S C, Senbetu, L, Woo, C W (1980). J Low Temp Phys, 41(5–6), 611–628.

    Article  CAS  Google Scholar 

  13. Frankland, S J V, & Brenner, D W (2001). Chem Phys Lett, 334(1–3), 18–23.

    Article  CAS  Google Scholar 

  14. Ferre-Vilaplana, A (2005). J Chem Phys, 122(21), 7.

    Article  Google Scholar 

  15. Dubbeldam, D, Calero, S, Vlugt, TJH, Krishna, R, Maesen, TLM, Beerdsen, E, Smit, B (2004). Physical Review Letters, 93(8).

  16. Norman, G E, & Filinov, V S (1969). High Temp, 7(2), 216–222.

    Google Scholar 

  17. Panagiotopoulos, A Z, Quirke, N, Stapleton, M, Tildesley, D J (1988). Mol Phys, 63(4), 527–545.

    Article  CAS  Google Scholar 

  18. Metropolis, N, Rosenbluth, A W, Rosenbluth, M N, Teller, A H, Teller, E (1953). J Chem Phys, 21(6), 1087–1092.

    Article  CAS  Google Scholar 

  19. Martin, M G (2012). Mcccs towhee version 7, 0, 4. http://towhee.sourceforge.net.

    Google Scholar 

  20. Sun, D Y, Liu, J W, Gong, X G, Liu, Z F (2007). Phys Rev B, 75(7), 7.

    Article  Google Scholar 

  21. Darkrim, F, & Levesque, D (2000). J Phys Chem B, 104(29), 6773–6776.

    Article  CAS  Google Scholar 

  22. Patchkovskii, S, Tse, J S, Yurchenko, S N, Zhechkov, L, Heine, T, Seifert, G (2005). Proc Natl Acad Sci USA, 102(30), 10,439–10,444.

    Article  CAS  Google Scholar 

  23. Cracknell, R F (2001). Phys Chem Chem Phys, 3(11), 2091–2097.

    Article  CAS  Google Scholar 

  24. Feynman, RP, & Hibbs, AR (1965). Quantum Mechanics and Path Integrals. New York.

  25. Rappe, A K, Casewit, C J, Colwell, K S, Goddard, W A, Skiff, W M (1992). J Amer Chem Soc, 114(25), 10,024–10,035.

    Article  CAS  Google Scholar 

  26. Snurr, R Q, Bell, A T, Theodorou, D N (1993). J Phys Chem, 97(51), 13,742–13,752.

    Article  CAS  Google Scholar 

  27. Chen, B, & Siepmann, J I (2001). J Phys Chem B, 105(45), 11,275–11,282.

    Article  CAS  Google Scholar 

  28. Chen, B, & Siepmann, J I (2000). J Phys Chem B, 104(36), 8725–8734.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Fundação para a Ciência e a Tecnologia - FCT, Portugal, through grant SFRH/BD/90502/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre L. Magalhães.

Additional information

This paper belongs to Topical Collection 9th European Conference on Computational Chemistry (EuCo-CC9)

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 85.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerario, M., Magalhães, A.L. A study of interaction potentials for H 2 adsorption in Single Walled Nano Tubes: a possible way to more realistic predictions. J Mol Model 20, 2194 (2014). https://doi.org/10.1007/s00894-014-2194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2194-8

Keywords

Navigation