Skip to main content
Log in

Encapsulation of alkyl and aryl derivatives of quaternary ammonium cations within cucurbit[n]uril (n = 6,7) and their inverted diastereomers: density functional investigations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Electronic structure, vibrational frequencies, and 1H chemical shifts of inclusion complexes between CB[n] (n = 6,7) or their inverted iCB[n] diastereomer hosts and quaternary diammonium viz., 1,6-hexyldiammonium (HDA) or p-xylyldiammonium (XYL) cationic guests are obtained from the density functional calculations. The interaction of CB[n] or iCB[n] with HDA (guest) conduce inclusion complexes in which the guest attains gauche conformation within the host cavity. The lowest energy XYL complexes of CB[6] or iCB[6] are comprised of one ammonium group orienting parallel to aromatic ring. The CB[7] or iCB[7] complexes of XYL on the other hand, reveal ammonium group(s) perpendicular to aromatic ring of the guest. The ureido C=O and N-H stretching vibrations on complexation engender frequency down-shift in the calculated spectra. This can be attributed to C-H---O and N-H---O interactions in the complex. The inverting of glycouril unit in iCB[n] renders a frequency shift (12 cm−1) for the C=O stretching in the opposite direction. Molecular electron density topography and natural bond orbital analyses have been used to explain the direction of frequency shifts. Calculated 1H NMR reveal that guest protons within the host cavity not participating in hydrogen bonding interactions, exhibit shielded signals compared to isolated XYL or HDA. Likewise the inverted protons in the iCB[6]-XYL complex led to up-field signals in calculated 1H NMR as a result of C-H---π interactions.

Conformers showing HDA encapsulated Cucurbit[7]uril.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jon SY, Ko YH, Park SH, Kim HJ, Kim K (2001) A facile, stereoselective [2+2] photoreaction mediated by cucurbit[8]uril. Chem Commun 19:1938–1939 doi: 10.1039/B105153A

    Google Scholar 

  2. Wang R, Yuan L, Macartney DH (2006) Cucurbit[7]uril mediates the stereoselective [4+4] photodimerization of 2-aminopyridine hydrochloride in aqueous solution. J Org Chem 71:237–1239

    Google Scholar 

  3. Wu XL, Luo L, Lei L, Liao GH, Wu LZ, Tung CH (2008) Highly efficient cucurbit[8]uril-templated intramolecular photocycloaddition of 2-naphthalene-labeled poly(ethylene glycol) in aqueous solution. J Org Chem 73:491–494

    Article  CAS  Google Scholar 

  4. Pattabiraman M, Kaanumalle LS, Natarajan A, Ramamurthy V (2006) Regioselective photodimerization of cinnamic acids in water: templation with cucurbiturils. Langmuir 22:7605–7609

    Article  CAS  Google Scholar 

  5. Mukhopadhyay P, Wu A, Isaacs L (2004) Social self-sorting in aqueous solution. J Org Chem 69:6157–6164

    Article  CAS  Google Scholar 

  6. Burnett CA, Witt D, Fettinger JC, Isaacs L (2003) Acyclic congener of cucurbituril: synthesis and recognition properties. J Org Chem 68:6184–6191

    Article  CAS  Google Scholar 

  7. Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Artificial molecular machines. Angew Chem Int Ed 39:3348–3391

    Article  CAS  Google Scholar 

  8. Corma A, García H, Montes-Navajas P, Primo A, Calvino JJ, Trasobares S (2007) Gold nanoparticles in organic capsules: a supramolecular assembly of gold nanoparticles and cucurbituril. Chem Eur J 13:6359–6364

    Article  CAS  Google Scholar 

  9. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 36:621–630

    Article  CAS  Google Scholar 

  10. Tuncel D, Steinke JHG (2004) Catalytic self-threading: a new route for the synthesis of polyrotaxanes. Macromolecules 37:288–302

    Article  CAS  Google Scholar 

  11. Carlqvist P, Maseras F (2007) A theoretical analysis of a classic example of supramolecular catalysis. Chem Commun 7:748–770

    Google Scholar 

  12. Wheate NJ, Buck DP, Day AI, Collins JG (2006) Cucurbit[n]uril binding of platinum anticancer complexes. Dalton Trans 3:451–458

    Google Scholar 

  13. Wei F, Liu SM, Xu L, Cheng GZ, Wu CT, Feng YQ (2005) The formation of cucurbit[n]uril (n = 6, 7) complexes with amino compounds in aqueous formic acid studied by capillary electrophoresis. Electrophoresis 26:2214–2224

    Article  CAS  Google Scholar 

  14. Xu L, Liu SM, Wu CT, Feng YQ (2004) Separation of positional isomers by cucurbit[7]uril-mediated capillary electrophoresis. Electrophoresis 25:3300–3306

    Article  CAS  Google Scholar 

  15. Rudkevich M (2004) Anti-markovnikov hydrofunctionalization of olefins mediated by -rhodium–porphyrin complexes. Angew Chem Int Ed 43:558–590

    Article  CAS  Google Scholar 

  16. Ong W, Zmez-Kaifer MG, Kaifer AE (2002) Cucurbit[7]uril: a very effective host for viologens and their cation radicals. Org Lett 4:1791–1794

    Article  CAS  Google Scholar 

  17. Ong W, Kaifer AE (2003) Molecular encapsulation by cucurbit[7]uril of the apical 4,4′-bipyridinium residue in newkome-type dendrimers. Angew Chem Int Ed 42:2164–2167

    Article  CAS  Google Scholar 

  18. Sun S, Zhang R, Andersson S, Pan J, Åkermark B, Sun L (2006) The photoinduced long-lived charge-separated state of Ru(bpy)3–methylviologen with cucurbit[8]uril in aqueous solution. Chem Commun 40:4195–4197

    Google Scholar 

  19. Ling Y, Mague JT, Kaifer AE (2007) Inclusion complexation of diquat and paraquat by the hosts cucurbit[7]uril and cucurbit[8]uril. Chem Eur J 13:7908–7914

    Article  CAS  Google Scholar 

  20. Wagner D, Stojanovic N, Day AI, Blanch RJ (2003) Host properties of cucurbit[7]uril: fluorescence enhancement of anilinonaphthalene sulfonates. J Phys Chem B 107:10741–10746

    Article  CAS  Google Scholar 

  21. Mock WL, Shih NY (1983) Host-guest binding capacity of cucurbituril. J Org Chem 48:3618–3619

    Article  CAS  Google Scholar 

  22. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) The cucurbit[n]uril family. Angew Chem Int Ed 44:4844–4870

    Article  CAS  Google Scholar 

  23. Buschmann HJ, Jansen K, Schollmeyer E (2003) Cucurbit[6]uril as ligand for the complexation of lanthanide cations in aqueous solution. Inorg Chem Commun 6:531–534

    Article  CAS  Google Scholar 

  24. Bali MS, Buck DP, Coe AJ, Day AI, Collins JG (2006) Cucurbituril binding of trans-[{PtCl(NH3)2}2(μ-NH2(CH2)8NH2)]2+ and the effect on the reaction with cysteine. Dalton Trans 45:5337–5344

    Google Scholar 

  25. Jeon WS, Moon K, Park SH, Chun H, Ko YH, Lee JY, Lee ES, Samal S, Selvapalam N, Rekharsky MV, Sindelar V, Sobransingh D, Inoue Y, Kaifer AE, Kim K (2005) Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. J Am Chem Soc 127:12984–12989

    Article  CAS  Google Scholar 

  26. Sobransingh D, Kaifer AE (2006) New dendrimers containing a single cobaltocenium unit covalently attached to the apical position of newkome dendrons: electrochemistry and guest binding interactions with cucurbit[7]uril. Langmuir 22:10540–10544

    Article  CAS  Google Scholar 

  27. Zou D, Andersson S, Zhang R, Sun S, Åkermark B, Sun L (2008) A host-induced intramolecular charge-transfer complex and light-driven radical cation formation of a molecular triad with cucurbit[8]uril. J Org Chem 73:3775–3783

    Article  CAS  Google Scholar 

  28. Park KM, Kim SY, Heo J, Whang D, Sakamoto S, Yamaguchi K, Kim K (2002) Designed self-assembly of molecular necklaces. J Am Chem Soc 124:214021–2104047

    Google Scholar 

  29. Sindelar V, Silvi S, Kaifer AE (2006) Switching a molecular shuttle on and off: simple, pH-controlled pseudorotaxanes based on cucurbit[7]uril. Chem Commun 20:2185–2187

    Google Scholar 

  30. Chakraborty A, Wu A, Witt D, Lagona J, Fettinger JC, Isaacs L (2002) Diastereoselective formation of glycoluril dimers: isomerization mechanism and implications for cucurbit[n]uril synthesis. J Am Chem Soc 124:8297–8306

    Article  CAS  Google Scholar 

  31. Kim J, Jung IS, Kim SY, Lee E, Kang JK, Sakamoto S, Yamaguchi K, Kim K (2000) New cucurbituril homologues: syntheses, isolation, characterization, and x-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc 122:540–541

    Article  CAS  Google Scholar 

  32. Day AI, Arnold AP, Blanch RJ, Snushall B (2001) Controlling factors in the synthesis of cucurbituril and its homologues. J Org Chem 66:8094–8100

    Article  CAS  Google Scholar 

  33. Mock WL (1995) Curubituril, supramolecular chemistry II–host design and molecular recognition. Springer, Heidelberg, p 1

    Book  Google Scholar 

  34. Eric M, Xiaoxi L, Roymon J, Lawrence K-M, Xiaoyong L (2012) Cucurbituril chemistry: a tale of supramolecular success. RSC Adv 2:1213–1247

    Article  CAS  Google Scholar 

  35. Derick L, Lyle I (2011) Recognition properties of acyclic glycoluril oligomers. Org Lett 13:4112–4115

    Article  CAS  Google Scholar 

  36. Lyle I (2009) Cucurbit[n]urils: from mechanism to structure and function. Chem Commun 6:619-629. doi: 10.1039/b814897j

    Google Scholar 

  37. Pichierri F (2005) Nanosoldering of thia-cucurbituril macrocycles with transition metals affords novel tubular nanostructures: a computational study. Chem Phys Lett 403:252–256

    Article  CAS  Google Scholar 

  38. Pinjari RV, Gejji SP (2010) On the binding of SF6 to cucurbit[6]uril host: density functional investigations. J Phys Chem A 114:2338–2343

    Article  CAS  Google Scholar 

  39. Pinjari RV, Khedkar JK, Gejji SP (2010) Cavity diameter and height of cyclodextrins and cucurbit[n]urils from the molecular electrostatic potential topography. J Incl Phenom Macrocycl Chem 66:371–380

    Article  CAS  Google Scholar 

  40. Zhang H, Ferrell TA, Asplund MC, Dearden DV (2007) Molecular beads on a charged molecular string: α, ω-alkyldiammonium complexes of cucurbit[6]uril in the gas phase. Int J Mass Spectrom 265:187–196

    Article  CAS  Google Scholar 

  41. Buschmann HJ, Wego A, Zielesny A, Schollmeyer E (2006) Structure, stability, electronic properties and nmr-shielding of the cucurbit[6]uril–spermine-complex. J Incl Phenom Macrocycl Chem 54:241–246

    Article  CAS  Google Scholar 

  42. Pichierri F (2006) DFT study of cucurbit[n]uril, n = 5–10. J Mol Struct THEOCHEM 765:151–152

    Article  CAS  Google Scholar 

  43. Dearden DV, Ferrell TA, Asplund MC, Zilch LW, Julian RR, Jarrold MF (2009) One ring to bind them all: shape-selective complexation of phenylenediamine isomers with cucurbit[6]uril in the gas phase. J Phys Chem A 113:989–997

    Article  CAS  Google Scholar 

  44. Pinjari RV, Gejji SP (2009) Inverted cucurbit[n]urils: density functional investigations on the electronic structure, electrostatic potential, and NMR chemical shifts. J Phys Chem A 113:1368–1376

    Article  CAS  Google Scholar 

  45. Mock WL, Shih NY (1986) Structure and selectivity in host-guest complexes of cucurbituril. J Org Chem 51:4440–4446

    Article  CAS  Google Scholar 

  46. Moghaddam S, Yang C, Rekharsky M, Ko YH, Kim K, Inoue Y, Gilson MK (2011) New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2] octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculation. J Am Chem Soc 133:3570–3581

    Article  CAS  Google Scholar 

  47. Rekharsky MV, Mori T, Yang C, Ko YH, Selvapalam N, Kim H, Sobransingh D, Kaifer AE, Liu S, Isaacs L et al (2007) A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy-entropy compensation. Proc Natl Acad Sci U S A 104:20737–20742

    Article  Google Scholar 

  48. Wu A, Chakraborty A, Witt D, Lagona J, Damkaci F, Ofori MA, Chiles JK, Fettinger JC, Isaacs L (2002) Methylene-bridged glycoluril dimers: synthetic methods. J Org Chem 67:5817–5830

    Article  CAS  Google Scholar 

  49. Isaacs L, Park SK, Liu S, Ko YH, Selvapalam N, Kim Y, Kim H, Zavalij PY, Kim GH, Lee HS, Kim K (2005) The inverted cucurbit[n]uril family. J Am Chem Soc 127:18000–18001

    Article  CAS  Google Scholar 

  50. Spath A, Konig B (2010) Molecular recognition of organic ammonium ions in solution using synthetic receptors. Beilstein J Org Chem 6:32

    Article  CAS  Google Scholar 

  51. Becke AD (1988) Density-function exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  52. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JRG, Calmani V, Barone B, Mennucci GA, Petersson H, Nakatsuji M, Caricato Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JEF Jr, Ogliaro M, Bearpark JJ, Heyd E, Brothers KN, Kudin VN, Staroverov R, Kobayashi J, Normand K, Raghavachari A, Rendell JC, Burant SS, Iyengar J, Tomasi M, Cossi N, Rega JM, Millam M, Klene JE, Knox JB, Cross V, Bakken C, Adamo J, Jaramillo R, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski RL, Martin K, Morokuma VG, Zakrzewski GA, Voth P, Salvador JJ, Dannenberg S, Dapprich AD, Daniels O, Farkas JB, Foresman JV, Ortiz J, Cioslowski Fox DJ (2009) Gaussian 09, revision A 02. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  54. Yan Z, Donald GT (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Google Scholar 

  55. Frischet MJ et al. (2010) GAUSSVIEW, under Gaussian 09. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  56. Bader RFW (1990) In atoms in molecules: a quantum theory. Oxford University Press, Clarendon

    Google Scholar 

  57. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  58. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  59. Limaye AC, Gadre SR (2001) UNIVIS-2000: an indigenously developed comprehensive visualization package. Curr Sci 80:1298–1301

    Google Scholar 

  60. Wolinski K, Hilton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  61. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  62. Ana MA, Sonia MF, Luis AE, Paulo JA (2012) On the Effects of Changing Gaussian Program Version and SCRF Defining Parameters: Isopropylamine as a Case Study. Bull Chem Soc Jpn 85(9):962–975

    Google Scholar 

Download references

Acknowledgments

S. P. G. acknowledges support from the University Grants Commission (UGC), New Delhi, India [Research Project F34-370] and University of Pune. I. A. R. is grateful to Center for Nanomaterials and Quantum Systems (CNQS), University of Pune, for the award of research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shridhar P. Gejji.

Electronic supplementary material

Figures of optimized geometries, superimposed structures of CB[6]-HDA as well as iCB[6]-XYL from the B97D and M06-2X functionals based DFT optimizations, vibration spectra and Tables showing 1H NMR chemical shifts for host protons.

ESM 1

(DOC 2260 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raja, I.A., Gobre, V.V., Pinjari, R.V. et al. Encapsulation of alkyl and aryl derivatives of quaternary ammonium cations within cucurbit[n]uril (n = 6,7) and their inverted diastereomers: density functional investigations. J Mol Model 20, 2138 (2014). https://doi.org/10.1007/s00894-014-2138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2138-3

Keywords

Navigation