Skip to main content
Log in

Molecular interactions of alcohols with zeolite BEA and MOR frameworks

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Zeolites can adsorb small organic molecules such as alcohols from a fermentation broth. Also in the zeolite-catalyzed conversion of alcohols to biofuels, biochemicals, or gasoline, adsorption is the first step. Several studies have investigated the adsorption of alcohols in different zeolites experimentally, but computational investigations in this field have mostly been restricted to zeolite MFI. In this study, the adsorption of C1–C4 alcohols in BEA and MOR was investigated using density functional theory (DFT). Calculated adsorption geometries and the corresponding energies of the designed cluster models were comparable to periodic calculations, and the adsorption energies were in the same range as the corresponding computational and experimental values reported in the literature for zeolite MFI. Thus, BEA and MOR may be good adsorption materials for alcohols in the field of downstream processing and catalysis. Aside from the DFT calculations, adsorption isotherms were determined experimentally in this study from aqueous solutions. For BEA, the adsorption of significant amounts of alcohol from aqueous solution was observed experimentally. In contrast, MOR was loaded with only a very small amount of alcohol. Although differences were found between the affinities obtained from gas-phase DFT calculations and those observed experimentally in aqueous solution, the computational data presented here represent molecular level information on the geometries and energies of C1–C4 alcohols adsorbed in zeolites BEA and MOR. This knowledge should prove very useful in the design of zeolite materials intended for use in adsorption and catalytic processes, as it allows adsorption behavior to be predicted via judiciously designed computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Remy T, Cousin Saint Remi J, Singh R et al (2011) Adsorption and separation of C1−C8 alcohols on SAPO-34. J Phys Chem C 115(16):8117–8125. doi:10.1021/jp111615e

  2. Cousin Saint Remi J, Baron G, Denayer J (2012) Adsorptive separations for the recovery and purification of biobutanol. Adsorption 18(5–6):367–373. doi:10.1007/s10450-012-9415-1

    Article  CAS  Google Scholar 

  3. Nguyen CM, Reyniers M, Marin GB (2010) Theoretical study of the adsorption of C1–C4 primary alcohols in H-ZSM-5. Phys Chem Chem Phys 12(32):9481. doi:10.1039/c000503g

    Article  CAS  Google Scholar 

  4. Nguyen CM, Reyniers M, Marin GB (2011) Theoretical study of the adsorption of the butanol isomers in H-ZSM-5. J Phys Chem C 115(17):8658–8669. doi:10.1021/jp111698b

    Article  CAS  Google Scholar 

  5. Oudshoorn A, van der Wielen LAM, Straathof AJJ (2009) Assessment of options for selective 1-butanol recovery from aqueous solution. Ind Eng Chem Res 48(15):7325–7336. doi:10.1021/ie900537w

    Article  CAS  Google Scholar 

  6. Nielsen DR, Prather KJ (2009) In situ product recovery of n-butanol using polymeric resins. Biotechnol Bioeng 102(3):811–821. doi:10.1002/bit.22109

    Google Scholar 

  7. Qureshi N, Hughes S, Maddox IS et al (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng 27(4):215–222. doi:10.1007/s00449-005-0402-8

    Article  CAS  Google Scholar 

  8. Xiong R, Sandler SI, Vlachos DG (2011) Alcohol adsorption onto silicalite from aqueous solution. J Phys Chem C 115(38):18659–18669. doi:10.1021/jp205312k

    Article  CAS  Google Scholar 

  9. Bai P, Tsapatsis M, Siepmann JI (2012) Multicomponent adsorption of alcohols onto silicalite-1 from aqueous solution: isotherms, structural analysis, and assessment of ideal adsorbed solution theory. Langmuir 28(44):15566–15576

    Google Scholar 

  10. Oudshoorn A, van der Wielen LAM, Straathof AJJ (2012) Desorption of butanol from zeolite material. Biochem Eng J 67:167–172

    Article  CAS  Google Scholar 

  11. Oudshoorn A, van der Wielen LA, Straathof AJ (2009) Adsorption equilibria of bio-based butanol solutions using zeolite. Biochem Eng J 48(1):99–103. doi:10.1016/j.bej.2009.08.014

    Article  CAS  Google Scholar 

  12. Delgado JA, Uguina MA, Sotelo JL et al (2012) Separation of ethanol–water liquid mixtures by adsorption on silicalite. Chem Eng J 180:137–144. doi:10.1016/j.cej.2011.11.026

    Article  CAS  Google Scholar 

  13. Bowen TC, Vane LM (2006) Ethanol, acetic acid, and water adsorption from binary and ternary liquid mixtures on high-silica zeolites. Langmuir 22(8):3721–3727. doi:10.1021/la052538u

    Article  CAS  Google Scholar 

  14. Saravanan V, Waijers D, Ziari M et al (2010) Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. Biochem Eng J 49(1):33–39. doi:10.1016/j.bej.2009.11.008

    Article  CAS  Google Scholar 

  15. Bjørgen M, Svelle S, Joensen F et al (2007) Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J Catal 249(2):195–207. doi:10.1016/j.jcat.2007.04.006

    Article  Google Scholar 

  16. Xiong R, Sandler SI, Vlachos DG (2012) Molecular screening of alcohol and polyol adsorption onto MFI-type zeolites. Langmuir 28(9):4491–4499. doi:10.1021/la204710j

    Article  CAS  Google Scholar 

  17. Zhang K, Lively RP, Noel JD et al (2012) Adsorption of water and ethanol in MFI-type zeolites. Langmuir 28(23):8664–8673. doi:10.1021/la301122h

    Article  CAS  Google Scholar 

  18. Brogaard RY, Moses PG, Nørskov JK (2012) Modeling van der Waals interactions in zeolites with periodic DFT: physisorption of n-alkanes in ZSM-22. Catal Lett 142(9):1057–1060. doi:10.1007/s10562-012-0870-9

  19. Haase F, Sauer J (2000) Ab initio molecular dynamics simulation of methanol interacting with acidic zeolites of different framework structure. Microporous Mesoporous Mater 35–36:379–385

    Article  Google Scholar 

  20. Wu JY, Liu QL, Xiong Y et al (2009) Molecular simulation of water/alcohol mixtures’ adsorption and diffusion in zeolite 4A membranes. J Phys Chem B 113(13):4267–4274. doi:10.1021/jp805923k

    Google Scholar 

  21. van der Mynsbrugge J, Hemelsoet K, Vandichel M et al (2012) Efficient approach for the computational study of alcohol and nitrile adsorption in H-ZSM-5. J Phys Chem C 116(9):5499–5508. doi:10.1021/jp2123828

    Article  Google Scholar 

  22. Svelle S, Tuma C, Rozanska X et al (2009) Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers. J Am Chem Soc 131(2):816–825. doi:10.1021/ja807695p

    Google Scholar 

  23. Greatbanks SP, Hillier IH, Burton NA et al (1996) Adsorption of water and methanol on zeolite Brønsted acid sites: an ab initio, embedded cluster study including electron correlation. J Chem Phys 105(9):3770. doi:10.1063/1.472197

    Google Scholar 

  24. Zhang J, Burke N, Yang Y (2012) Molecular simulation of propane adsorption in FAU zeolites. J Phys Chem C 116(17):9666–9674. doi:10.1021/jp301780z

    Article  CAS  Google Scholar 

  25. Mallon EE, Babineau IJ, Kranz JI et al (2011) Correlations for adsorption of oxygenates onto zeolites from aqueous solutions. J Phys Chem B 115(39):11431–11438. doi:10.1021/jp208143t

    Article  CAS  Google Scholar 

  26. Güvenç E, Ahunbay MG (2012) Adsorption of methyl tertiary butyl ether and trichloroethylene in MFI-type zeolites. J Phys Chem C 116(41):21836–21843. doi:10.1021/jp3067052

    Article  Google Scholar 

  27. Lee C, Gorte RJ, Farneth WE (1997) Calorimetric study of alcohol and nitrile adsorption complexes in H-ZSM-5. J Phys Chem B 101(19):3811–3817. doi:10.1021/jp970711s

    Article  CAS  Google Scholar 

  28. Mallon EE, Bhan A, Tsapatsis M (2010) Driving forces for adsorption of polyols onto zeolites from aqueous solutions. J Phys Chem B 114(5):1939–1945. doi:10.1021/jp910543r

    Article  CAS  Google Scholar 

  29. van Speybroeck V, van der Mynsbrugge J, Vandichel M et al (2011) First principle kinetic studies of zeolite-catalyzed methylation reactions. J Am Chem Soc 133(4):888–899. doi:10.1021/ja1073992

    Article  Google Scholar 

  30. Tuma C, Sauer J (2006) Treating dispersion effects in extended systems by hybrid MP2:DFT calculations-protonation of isobutene in zeolite ferrierite. Phys Chem Chem Phys 8(34):3955. doi:10.1039/b608262a

    Article  CAS  Google Scholar 

  31. Kerber T, Sierka M, Sauer J (2008) Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory. J Comput Chem 29(13):2088–2097. doi:10.1002/jcc.21069

    Article  CAS  Google Scholar 

  32. Goltl F, Gruneis A, BuCko T et al (2012) Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller–Plesset perturbation theory. J Chem Phys 137(11):114111–114117

    Google Scholar 

  33. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  34. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett 102(7):073005. doi: 10.1103/PhysRevLett.102.073005

    Google Scholar 

  35. Klimeš J, Bowler DR, Michaelides A (2010) Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 22(2):22201

    Article  Google Scholar 

  36. Dion M, Rydberg H, Schröder E et al (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92(24):246401

    Article  CAS  Google Scholar 

  37. Nabok D, Puschnig P, Ambrosch-Draxl C (2011) noloco: An efficient implementation of van der Waals density functionals based on a Monte-Carlo integration technique. Comput Phys Commun 182(8):1657–1662. doi:10.1016/j.cpc.2011.04.015

    Article  CAS  Google Scholar 

  38. Kotrla J, Nachtigallová D, Kubelková L et al (1998) Hydrogen bonding of methanol with bridged OH groups of zeolites: ab initio calculation, 1H NMR and FTIR studies. J Phys Chem B 102(14):2454–2463. doi:10.1021/jp9718055

    Google Scholar 

  39. Haase F, Sauer J (1994) 1H NMR chemical shifts of ammonia, methanol, and water molecules interacting with Broensted acid sites of zeolite catalysts: ab-initio calculations. J Phys Chem 98(12):3083–3085. doi:10.1021/j100063a006

    Google Scholar 

  40. Haase F, Sauer J (1995) Interaction of methanol with Broensted acid sites of zeolite catalysts: an ab initio study. J Am Chem Soc 117(13):3780–3789. doi:10.1021/ja00118a014

    Article  CAS  Google Scholar 

  41. Haase F, Sauer J, Hutter J (1997) Ab initio molecular dynamics simulation of methanol adsorbed in chabazite. Chem Phys Lett 266(3–4):397–402

    Article  CAS  Google Scholar 

  42. Izmailova SG, Karetina IV, Khvoshchev SS et al (1994) Calorimetric and IR-spectroscopic study of methanol adsorption on zeolites. J Colloid Interface Sci 165(2):318–324. doi:10.1006/jcis.1994.1235

    Article  CAS  Google Scholar 

  43. Krossner M, Sauer J (1996) Interaction of water with Brønsted acidic sites of zeolite catalysts. Ab initio study of 1:1 and 2:1 surface complexes. J Phys Chem 100(15):6199–6211. doi:10.1021/jp952775d

    Article  CAS  Google Scholar 

  44. Vener MV, Rozanska X, Sauer J (2009) Protonation of water clusters in the cavities of acidic zeolites: (H2O)n · H–chabazite, n = 1–4. Phys Chem Chem Phys 11(11):1702. doi:10.1039/b817905k

    Google Scholar 

  45. Blaszkowski SR, van Santen RA (1995) Density functional theory calculations of the activation of methanol by a Broensted zeolitic proton. J Phys Chem 99(30):11728–11738. doi:10.1021/j100030a017

    Article  CAS  Google Scholar 

  46. Gale JD, Catlow CRA, Carruthers JR (1993) An ab initio study of methanol adsorption in zeolites. Chem Phys Lett 216(1–2):155–161

    Article  CAS  Google Scholar 

  47. Govind N, Andzelm J, Reindel K et al (2002) Zeolite-catalyzed hydrocarbon formation from methanol: density functional simulations. Int J Mol Sci 3(4):423–434. doi:10.3390/i3040423

    Article  CAS  Google Scholar 

  48. Stich I, Gale JD, Terakura K, Payne MC (1998) Dynamical observation of the catalytic activation of methanol in zeolites. Chem Phys Lett 283(5–6):402–408

    Google Scholar 

  49. Broach RW, Jan D, Lesch DA, Kulprathipanja S, Roland E, Kleinschmit P (2013) Zeolites. Ullmann’s Encycl Ind Chem (in press). doi:10.1002/14356007.a28_475.pub2

  50. Bowen TC, Noble RD, Falconer JL (2004) Fundamentals and applications of pervaporation through zeolite membranes. J Membr Sci 245(1–2):1–33

    Article  CAS  Google Scholar 

  51. Fujita H, Kanougi T, Atoguchi T (2006) Distribution of Brønsted acid sites on beta zeolite H-BEA: a periodic density functional theory calculation. Appl Catal A Gen 313(2):160–166. doi:10.1016/j.apcata.2006.07.017

  52. Flanigen EM, Broach RW, Wilson ST (2010) Introduction. In: Kulprathipanja S (ed) Zeolites in industrial separation and catalysis. Wiley-VCH, Weinheim, pp 1–26

  53. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54(11):2717–2722

    CAS  Google Scholar 

  54. Choi S, Lee J, Jang Y et al (2012) Effects of nutritional enrichment on the production of acetone–butanol–ethanol (ABE) by Clostridium acetobutylicum. J Microbiol 50(6):1063–1066. doi:10.1007/s12275-012-2373-1

    Google Scholar 

  55. Setlhaku M, Brunberg S, Villa Edel A, Wichmann R (2012) Improvement in the bioreactor specific productivity by coupling continuous reactor with repeated fed-batch reactor for acetone–butanol–ethanol production. Res Ind Biot CLIB-Graduate Cluster Pt II 161(2):147–152. doi: 10.1016/j.jbiotec.2012.04.004

  56. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508. doi:10.1063/1.458452

    Article  CAS  Google Scholar 

  57. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756. doi:10.1063/1.1316015

    Google Scholar 

  58. Accelrys, Inc. (2011) Materials Studio 6.0. Accelrys, Inc., San Diego. http://www.accelrys.com

  59. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  60. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54(23):16533–16539

    Article  CAS  Google Scholar 

  61. Hansen N (2010) Multiscale modeling of reaction and diffusion in zeolites. Technische Universität Hamburg-Harburg, Hamburg

  62. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138. doi:10.1007/BF00549096

    Article  CAS  Google Scholar 

  63. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23(10):1833

    Google Scholar 

  64. Mayer I (2007) Bond order and valence indices: a personal account. J Comput Chem 28(1):204–221. doi:10.1002/jcc.20494

    Article  CAS  Google Scholar 

  65. Doronina LA, Izmailova SG, Karetina IV et al (1995) Calorimetric and IR-spectroscopic study of adsorption of methanol on zeolite-like aluminophosphates. Russ Chem Bull 44(10):1857–1862. doi:10.1007/BF00707212

    Article  Google Scholar 

  66. Mirth G, Lercher JA, Anderson MW et al (1990) Adsorption complexes of methanol on zeolite ZSM-5. Faraday Trans 86(17):3039. doi:10.1039/ft9908603039

    Article  CAS  Google Scholar 

  67. Kondo JN, Ito K, Yoda E et al (2005) An ethoxy intermediate in ethanol dehydration on Brønsted acid sites in zeolite. J Phys Chem B 109(21):10969–10972. doi:10.1021/jp050721q

    Article  CAS  Google Scholar 

  68. Makarova MA, Williams C, Zamaraev KI et al (1994) Mechanistic study of sec-butyl alcohol dehydration on zeolite H-ZSM-5 and amorphous aluminosilicate. J Chem Soc Faraday Trans 90(14):2147–2153. doi:10.1039/FT9949002147

    Google Scholar 

  69. Pelmenschikov AG, van Wolput JHMC, Jaenchen J et al (1995) (A, B, C) triplet of infrared OH bands of zeolitic H-complexes. J Phys Chem 99(11):3612–3617. doi:10.1021/j100011a031

    Google Scholar 

  70. Catlow CRA, van Santen RA, Smit BJ (2004) Computer modelling of microporous materials, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  71. Mihaleva VV, van Santen RA, Jansen APJ (2003) The heterogeneity of the hydroxyl groups in chabazite. J Chem Phys 119(24):13053. doi:10.1063/1.1628221

    Article  CAS  Google Scholar 

  72. Limtrakul J, Tantanak D (1995) Structures, energetics and vibrational frequencies of zeolitic catalysts: a comparison between density functional and post-Hartree–Fock approaches. J Mol Struct THEOCHEM 358(1–3):179–193

    Google Scholar 

  73. Payne MC, Hytha M, Štich I et al (2001) First principles calculation of the free energy barrier for the reaction of methanol in a zeolite catalyst. Microporous Mesoporous Mater 48(1–3):375–381

    Article  CAS  Google Scholar 

  74. Rimola A, Costa D, Sodupe M et al (2013) Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 113(6):4216–4313. doi:10.1021/cr3003054

    Article  CAS  Google Scholar 

  75. Kongpatpanich K, Nanok T, Boekfa B et al (2011) Structures and reaction mechanisms of glycerol dehydration over H-ZSM-5 zeolite: a density functional theory study. Phys Chem Chem Phys 13(14):6462. doi:10.1039/c0cp01720e

    Article  CAS  Google Scholar 

  76. Datt A, Fields D, Larsen SC (2012) An experimental and computational study of the loading and release of aspirin from zeolite HY. J Phys Chem C 116(40):21382–21390. doi:10.1021/jp3067266

    Article  CAS  Google Scholar 

  77. Boekfa B, Sirijareansre J, Limtrakul P, Pantu P, Limtrakul J (2007) Adsorption of glycine amino acid in zeolite: an embedded QM/MM study. Proc NSTI-Nanotech 1:454–457

  78. Plant DF, Simperler A, Bell RG (2006) Adsorption of methanol on zeolites X and Y. An atomistic and quantum chemical study. J Phys Chem B 110(12):6170–6178. doi:10.1021/jp0564142

    Article  CAS  Google Scholar 

  79. Shah R, Gale JD, Payne MC (1996) Methanol adsorption in zeolites: a first-principles study. J Phys Chem 100(28):11688–11697. doi:10.1021/jp960365z

    Google Scholar 

  80. Milestone NB, Bibby DM (1981) Concentration of alcohols by adsorption on silicalite. J Chem Technol Biotechnol 31(1):732–736

    Article  CAS  Google Scholar 

  81. García-Serrano LA, Flores-Sandoval CA, Zaragoza IP (2003) Theoretical study of the adsorption of isobutane over H-mordenite zeolite by ab initio and DFT methods. J Mol Catal A Chem 200(1–2):205–212. doi:10.1016/S1381-1169(02)00680-5

    Article  Google Scholar 

  82. Bolis V, Busco C, Ugliengo P (2006) Thermodynamic study of water adsorption in high-silica zeolites. J Phys Chem B 110(30):14849–14859. doi:10.1021/jp061078q

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Ministry of Innovation, Science and Research of North Rhine-Westphalia through the CLIB-Graduate Cluster Industrial Biotechnology initiative, contract no: 314–108 001 08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane Merz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The online version of this article contains supplementary material, which is available to authorized users. Additional information on experiments and theoretical data, such as the optimized geometries of the alcohols adsorbed in BEA and MOR, is listed. (PDF 1.15 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stückenschneider, K., Merz, J. & Schembecker, G. Molecular interactions of alcohols with zeolite BEA and MOR frameworks. J Mol Model 19, 5611–5624 (2013). https://doi.org/10.1007/s00894-013-2048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2048-9

Keywords

Navigation