Skip to main content
Log in

A structural modeling approach for the understanding of initiation and elongation of ALS-linked superoxide dismutase fibrils

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Familial amyotrophic lateral sclerosis caused by mutations in copper-zinc superoxide dismutase (SOD1) is characterized by the presence of SOD1-rich inclusions in spinal cords. It has been shown that a reduced intra-subunit disulfide bridge apo-SOD1 can rapidly initiate fibrillation forming an inter-subunits disulfide under mild, physiologically accessible conditions. Once initiated, elongation can proceed via recruitment of either apo or partially metallated disulfide-intact SOD1 and the presence of copper, but not zinc, ions inhibit fibrillation. We propose a structural model, refined through molecular dynamics simulations, that, taking into account these experimental findings, provides a molecular explanation for the initiation and the elongation of SOD1 fibrils in physiological conditions. The model indicates the occurrence of a new dimeric unit, prone to interact one with the other due to the presence of a wide hydrophobic surface and specific electrostatic interactions. The model has dimensions consistent with the SOD1 fibril size observed through electron microscopy and provides a structural basis for the understanding of SOD1 fibrillation.

ALS-linked superoxide dismutase fibrils

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haverkamp LJ, Appel V, Appel SH (1995) Natural history of amyotrphic lateral sclerosis in a database population. Validation of scoring system and a model for survival prediction. Brain 118:707–719

    Article  Google Scholar 

  2. Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP, Warner C, Deng G, Soriano E, Smyth C, Parge HE, Ahmed A, Roses AD, Hallewell RA, Pericak-Vance MA, Siddique T (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261:1047–1051

    Article  CAS  Google Scholar 

  3. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  Google Scholar 

  4. Valentine JS, Doucette PA, Potter SZ (2005) Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74:563–593

    Article  CAS  Google Scholar 

  5. Tiwari A, Hayward LJ (2003) Familial amyotrophic lateral sclerosis mutants of copper/zinc superoxide dismutase are susceptible to disulfide reduction. J Biol Chem 278:5984–5992

    Article  CAS  Google Scholar 

  6. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    Article  CAS  Google Scholar 

  7. Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, Durham HD (1999) Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem 72:693–699

    Article  CAS  Google Scholar 

  8. Okado-Matsumoto A, Fridovich I (2002) Amyotrophic lateral sclerosis: a proposed mechanism. Proc Natl Acad Sci USA 99:9010–9014

    CAS  Google Scholar 

  9. Borchelt DR, Wong PC, Becher MW, Pardo CA, Lee MK, Xu ZS, Thinakaran G, Jenkins NA, Copeland NG, Sisodia SS, Cleveland DW, Price DL, Hoffman PN (1998) Axonal transport of mutant superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice. Neurobiol Dis 5:27–35

    Article  CAS  Google Scholar 

  10. Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2:50–56

    Article  CAS  Google Scholar 

  11. Johnston JA, Dalton MJ, Gurney ME, Kopito RR (2000) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 97:12571–12576

    Article  CAS  Google Scholar 

  12. Kato S, Hayashi H, Nakashima K, Nanba E, Kato M, Hirano A, Nakano I, Asayama K, Ohama E (1997) Pathological characterization of astrocytic hyaline inclusions in familial amyotrophic lateral sclerosis. Am J Pathol 151:611–620

    CAS  Google Scholar 

  13. Shibata N, Hirano A, Kobayashi M, Sasaki S, Kato T, Matsumoto S, Shiozawa Z, Komori T, Ikemoto A, Umahara T, Asayama K (1994) Cu/Zn superoxide dismutase-like immunoreactivity in Lewy bodylike inclusions of sporadic amyotrophic lateral sclerosis. Neurosci Lett 179:149–152

    Article  CAS  Google Scholar 

  14. Chattopadhyay M, Durazo A, Sohn SH, Strong CD, Gralla EB, Whitelegge JP, Valentine JS (2008) Initiation and elongation in fibrillation of ALS-linked superoxide dismutase. Proc Natl Acad Sci USA 105:18649–18650

    Article  Google Scholar 

  15. Di Donato M, Craig L, Huff ME, Thayer MM, Cardoso RM, Kassmann CJ, Lo TP, Bruns CK, Powers ET, Kelly JW, Getzoff ED, Tainer JA (2003) ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. J Mol Biol 332:601–615

    Article  Google Scholar 

  16. Stathopulos PB, Rumfeldt JA, Scholz GA, Irani RA, Frey HE, Hallewell RA, Lepock JR, Meiering EM (2003) Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro. Proc Natl Acad Sci USA 100:7021–7026

    Article  CAS  Google Scholar 

  17. Furukawa Y, Kaneko K, Yamanaka K, O’Halloran TV, Nukina N (2008) Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in familial form of ALS. J Biol Chem 283:24167–24176

    Article  CAS  Google Scholar 

  18. Seetharaman SV, Prudencio M, Karch C, Holloway SP, Borchelt DR, Hart PJ (2009) Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Exp Biol Med 234:1140–1154

    Article  CAS  Google Scholar 

  19. Sheng Y, Chattopadhyay M, Whitelegge J, Valentine JS (2012) SOD1 Aggregation and ALS: role of metallation states and disulfide status. Curr Top Med Chem 12:2560–2572

    Article  CAS  Google Scholar 

  20. Mulligan VK, Chakrabartty A (2013) Protein misfolding in the late-onset neurodegenerative diseases: common themes and the unique case of amyotrophic lateral sclerosis. Proteins doi:10.1002/prot.24285

    Google Scholar 

  21. Strange RW, Yong CW, Smith W, Hasnain SS (2007) Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu-Zn superoxide dismutase. Proc Natl Acad Sci U S A 104:10040–10044

    Article  CAS  Google Scholar 

  22. Ding F, Dokholyan NV (2008) Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proc Natl Acad Sci U S A 105:19696–19701

    Article  CAS  Google Scholar 

  23. Ding F, Furukawa Y, Nukina N, Dokholyan NV (2012) Local unfolding of Cu, Zn superoxide dismutase monomer determines the morphology of fibrillar aggregates. J Mol Biol 421:548–560

    Article  CAS  Google Scholar 

  24. Banci L, Bertini I, Cantini F, D’Amelio N, Gaggelli E (2006) Human SOD1 before harboring the catalytic metal: solution structure of copper-depleted, disulfide-reduced form. J Biol Chem 281:2333–2337

    Article  CAS  Google Scholar 

  25. Strange RW, Antonyuk S, Hough MA, Doucette PA, Rodriguez JA, Hart PJ, Hayward LJ, Valentine JS, Hasnain SS (2003) The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. J Mol Biol 328:877–891

    Article  CAS  Google Scholar 

  26. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods R (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  27. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  28. Pang YP (1999) Novel zinc protein molecular dynamics simulations: steps toward antiangiogenesis for cancer treatment. J Mol Model 5:196–202

    Article  CAS  Google Scholar 

  29. Falconi M, Oteri F, Di Palma F, Pandey S, Battistoni A, Desideri A (2011) Structural-dynamical investigation of the ZnuA histidine-rich loop: involvement in zinc management and transport. J Comput Aided Mol Des 225:181–94

    Article  Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  31. Darden T, York D, Pedersen L (1993) Particle mesd Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  32. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23:327–341

    Article  CAS  Google Scholar 

  33. Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  34. Loncharich RJ, Brooks BR, Pastor RW (1992) Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide. Byopolymers 32:523–535

    Article  CAS  Google Scholar 

  35. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613

    Article  CAS  Google Scholar 

  36. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  37. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996) VMD - Visual Molecular Dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  39. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  Google Scholar 

  40. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res 33:363–367

    Article  Google Scholar 

  41. Tainer JA, Getzoff ED, Beem KM, Richardson JS, Richardson DC (1982) Determination and analysis of the 2 Å structure of copper, zinc superoxide dismutase. J Mol Biol 160:181–217

    Article  CAS  Google Scholar 

  42. Roberts BLT, Patel K, Brown HH, Borchelt DR (2012) Role of disulfide cross-linking of mutant SOD1 in the formation of inclusion-body-like structures. PLoS One 7:e47838

    Article  CAS  Google Scholar 

  43. Rousseau F, Serrano L, Schymkowitz JW (2006) How evolutionary pressure against protein aggregation shaped chaperone specificity. J Mol Biol 355:1037–1047

    Article  CAS  Google Scholar 

  44. DeLano WL (2002) The PyMOL Molecular Graphics System World Wide Web (http://www.pymol.org)

  45. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Falconi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4809 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falconi, M., Iacovelli, F. & Desideri, A. A structural modeling approach for the understanding of initiation and elongation of ALS-linked superoxide dismutase fibrils. J Mol Model 19, 3695–3704 (2013). https://doi.org/10.1007/s00894-013-1896-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1896-7

Keywords

Navigation