Skip to main content
Log in

Reaction mechanism of CH3M≡MCH3 (M=C, Si, Ge) with C2H4: [2+1] or [2+2] cycloaddition?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism of the cycloaddition reaction CH3M≡MCH3 (M=C, Si, Ge) with C2H4 has been studied at the CCSD(T)/6-311++G(d,p)//MP2/6-311++G(d,p) level. Vibrational analysis and intrinsic reaction coordinate (IRC), calculated at the same level, have been applied to validate the connection of the stationary points. The breakage and formation of the chemical bonds of the titled reactions are discussed by the topological analysis of electron density. The calculated results show that, of the three titled reactions, the CH3Si≡SiCH3+C2H4 reaction has the highest reaction activity because it has the lowest energy barriers and the products with the lowest energy. The CH3C≡CCH3+C2H4 reaction occurs only with difficulty since it has the highest energy barriers. The reaction mechanisms of the title reactions are similar. A three-membered-ring is initially formed, and then it changed to a four-membered-ring structure. This means that these reactions involve a [2+1] cycloaddition as the initial step, instead of a direct [2+2] cycloaddition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Power PP (2007) Organmetallics 26:4362–4372

    Article  CAS  Google Scholar 

  2. Luke BT, Peple JA, Krogh-Jespersen MB, Apeloig Y, Karni M, Chandrasekhar J, Schleyer PVR (1986) J Am Chem Soc 108:270–284

    Article  CAS  Google Scholar 

  3. Koseki S, Gordon MS (1988) J Phys Chem 92:364–367

    Article  CAS  Google Scholar 

  4. Golegrove BT, Schaefer HF III (1991) J Am Chem Soc 113:1557–1561

    Article  Google Scholar 

  5. Kobayashi K, Nagase S (1997) Organometallic 16:2489–2491

    Article  CAS  Google Scholar 

  6. Nagase S, Kobayashi K, Tagagi N (2000) J Organmet Chem 611:254–258

    Article  Google Scholar 

  7. Karni M, Apeloig Y (2002) Silicon Chem 1:61–66

    Article  CAS  Google Scholar 

  8. Pignedoli CA, Curioni A, Andreoni W (2005) Chem Phys Chem 6:1795–1799

    Article  CAS  Google Scholar 

  9. Lein M, Krapp A, Frenking G (2005) J Am Chem Soc 127:6290–6299

    Article  CAS  Google Scholar 

  10. Frenking G, Krapp A, Nagase S, Takagi N, Sekiguchi A (2006) Chem Phys Chem 7:799–800

    Article  CAS  Google Scholar 

  11. Pignedoli CA, Curioni A, Andreoni W (2006) Chem Phys Chem 7:801–802

    Article  CAS  Google Scholar 

  12. Jung Y, Brynda M, Power PP, Head-Gordon M (2006) J Am Chem Soc 128:7185–7192

    Article  CAS  Google Scholar 

  13. Sekiguchi A, Zigler SS, West R, Michl J (1986) J Am Chem Soc 108:4241–4242

    Article  CAS  Google Scholar 

  14. Cordonnier M, Bogey M, Demuynck C, Destombes J-L (1982) J Chem Phys 97:7984–7989

    Article  Google Scholar 

  15. Bogey M, Bolvin H, Demuynck C, Destombes J-L (1991) Phys Rev Lett 66:413–416

    Article  CAS  Google Scholar 

  16. Karni M, Apeloig Y, Schroder D, Zummack W, Rabezanna R, Schwarz H (1999) Angew Chem Int Ed 38:332–335

    Article  CAS  Google Scholar 

  17. Pietschnig R, West R, Powell DR (2000) Organometallics 19:2724–2729

    Article  CAS  Google Scholar 

  18. Power PP (1999) Chem Rev 99:3463–3503

    Article  CAS  Google Scholar 

  19. Pu L, Twamley B, Power PP (2000) J Am Chem Soc 122:3524–3525

    Article  CAS  Google Scholar 

  20. Phillips AD, Wright RJ, Olmstead MM, Power PP (2002) J Am Chem Soc 124:5930–5931

    Article  CAS  Google Scholar 

  21. Pu L, Phillips AD, Richards AF, Stender M, Simons RS, Olmstead MM, Power PP (2003) J Am Chem Soc 125:11626–11636

    Article  CAS  Google Scholar 

  22. Sekiguchi A, Kinjo R, Ichinohe M (2004) Science 305:1755–1757

    Article  CAS  Google Scholar 

  23. Sugiyama Y, Sasamori T, Hosoi Y, Furukawa Y, Takagi N, Nagase S, Tokitoh N (2006) J Am Chem Soc 128:1023–1031

    Article  CAS  Google Scholar 

  24. Fischer RC, Pu L, Fettinger JC, Brynda MA, Power PP (2006) J Am Chem Soc 128:11366–11367

    Article  CAS  Google Scholar 

  25. Wiberg N, Vasisht SK, Fischer G, Mayer P (2004) Z Anorg Allg Chem 630:1823–1828

    Article  CAS  Google Scholar 

  26. Stender M, Phillips AD, Wright RJ, Power PP (2002) Angew Chem Int Ed 41:1785–1787

    Article  CAS  Google Scholar 

  27. Power PP (2010) Nature 463:171–177

    Article  CAS  Google Scholar 

  28. Kinjo R, Ichinohe M, Sekiguchi A, Takagi N, Sumimoto M, Nagase S (2007) J Am Chem Soc 129:7766–7767

    Article  CAS  Google Scholar 

  29. Cui C, Olmstead MM, Power PP (2004) J Am Chem Soc 126:5062–5063

    Article  CAS  Google Scholar 

  30. Cui C, Brynda M, Olmstead MM, Power PP (2004) J Am Chem Soc 126:6510–6511

    Article  CAS  Google Scholar 

  31. Glowacki DR, Marsden SP, Pilling MJ (2009) J Am Chem Soc 131:13896–13897

    Article  CAS  Google Scholar 

  32. Kına A, Piecuch P (2006) J Phys Chem A 110:367–378

    Article  Google Scholar 

  33. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  34. Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700–3703

    Article  CAS  Google Scholar 

  35. Ishida G, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153–2156

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, Revision D. 02. Gaussian, Inc, Wallingford

    Google Scholar 

  37. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  38. Popelier P (2000) Atoms in molecules-an introduction. UMIST Manchester

  39. Biegler-könig F, Schonbohm J (2000) AIM 2000 program package, ver. 2.0. University of Applied Science, Bielefeld

    Google Scholar 

  40. Alikhani ME (1997) Chem Phys Lett 277:239–244

    Article  CAS  Google Scholar 

  41. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks for International Science Editing to edit this paper. This work was supported by the National Natural Science Foundation of China (Contract NO. 21102033, 21171047, 21073051), the Natural Science Foundation of Hebei Province (Contract NO. B2011205058), the Education Department Foundation of Hebei Province (NO. ZD2010126, ZH2012106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Li or Lingpeng Meng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, S., Li, X., Zeng, Y. et al. Reaction mechanism of CH3M≡MCH3 (M=C, Si, Ge) with C2H4: [2+1] or [2+2] cycloaddition?. J Mol Model 19, 3501–3506 (2013). https://doi.org/10.1007/s00894-013-1882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1882-0

Keywords

Navigation