Skip to main content
Log in

Why is quercetin a better antioxidant than taxifolin? Theoretical study of mechanisms involving activated forms

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The stronger antioxidant capacity of the flavonoid quercetin (Q) compared with taxifolin (dihydroquercetin, T) has been the subject of previous experimental and theoretical studies. Theoretical work has focused on the analysis of hydrogen bond dissociation energies (BDE) of the OH phenolic groups, but consider mechanisms that only involve the transfer of one hydrogen atom. In the present work we consider other mechanisms involving a second hydrogen transfer in reactions with free radicals. The relative stability of the radicals formed after the first hydrogen transfer reaction is considered in discussing the antioxidant activity of Q and T. In terms of global and local theoretical reactivity descriptors, we propose that the radical arising from Q should be more persistent in the environment and with the capability to react with a second radical by hydrogen transfer, proton transfer and electron transfer mechanisms. These mechanisms could be responsible of the stronger antioxidant capacity of Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ross JA, Kasum CM (2002) Annu Rev Nutr 22:19–34

    Article  CAS  Google Scholar 

  2. Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR (1999) J Agric Food Chem 47:2274–2279

    Article  CAS  Google Scholar 

  3. Vinson JA, Dabbagh YA, Serry MM, Jang JH (1995) J Agric Food Chem 43:2800–2802

    Article  CAS  Google Scholar 

  4. RiceEvans CA, Miller NJ, Paganga G (1996) Free Radical Biol Med 20:933–956

    Article  CAS  Google Scholar 

  5. Burton GW, Doba T, Gabe EJ, Hughes L, Lee FL, Prasad L, Ingold KU (1985) J Am Chem Soc 107:7053–7065

    Article  CAS  Google Scholar 

  6. de Heer MI, Mulder P, Korth HG, Ingold KU, Lusztyk J (2000) J Am Chem Soc 122:2355–2360

    Article  Google Scholar 

  7. Jovanovic SV, Steenken S, Hara Y, Simic MG (1996) J Chem Soc Perkin 2:2497–2504

    Google Scholar 

  8. Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) J Am Chem Soc 116:4846–4851

    Article  CAS  Google Scholar 

  9. Foti MC, Daquino C, Geraci C (2004) J Org Chem 69:2309–2314

    Article  CAS  Google Scholar 

  10. Litwinienko G, Ingold KU (2003) J Org Chem 68:3433–3438

    Article  CAS  Google Scholar 

  11. Zhang HY, Ji HF (2006) New J Chem 30:503–504

    Article  CAS  Google Scholar 

  12. Anouar E, Kosinova P, Kozlowski D, Mokrini R, Duroux JL, Trouillas P (2009) Phys Chem Chem Phys 11:7659–7668

    Article  CAS  Google Scholar 

  13. Leopoldini M, Marino T, Russo N, Toscano M (2004) J Phys Chem A 108:4916–4922

    Article  CAS  Google Scholar 

  14. Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210–216

    Article  CAS  Google Scholar 

  15. Leopoldini M, Pitarch IP, Russo N, Toscano M (2004) J Phys Chem A 108:92–96

    Article  CAS  Google Scholar 

  16. Leopoldini M, Russo N, Chiodo S, Toscano M (2006) J Agric Food Chem 54:6343–6351

    Article  CAS  Google Scholar 

  17. Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173–1183

    Article  CAS  Google Scholar 

  18. Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288–306

    Article  CAS  Google Scholar 

  19. Russo N, Toscano M, Uccella N (2000) J Agric Food Chem 48:3232–3237

    Article  CAS  Google Scholar 

  20. Priyadarsini I, Naik G, Mohan H, Maity D (2003) Free Radical Biol Med 35:8

    Article  Google Scholar 

  21. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers A, Rietjens I (2001) Free Radical Biol Med 31:869–881

    Article  CAS  Google Scholar 

  22. Lucarini M, Peduli GF, Guerra M (2004) Chem-Eur J 10:933–939

    Article  CAS  Google Scholar 

  23. DiLabio GA, Pratt DA, LoFaro AD, Wright JS (1999) J Phys Chem A 103:1653–1661

    Article  CAS  Google Scholar 

  24. Trouillas P, Fagnere C, Lazzaroni R, Calliste C, Marfak A, Duroux JL (2004) Food Chem 88:571–582

    Article  CAS  Google Scholar 

  25. Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux JL (2006) Food Chem 97:679–688

    Article  CAS  Google Scholar 

  26. Zhang HY, Sung YM, Wang XL (2003) Chem-Eur J 9:502–508

    Article  CAS  Google Scholar 

  27. Zhang HY (2004) New J Chem 28:1284–1285

    Article  CAS  Google Scholar 

  28. Vanacker S, Degroot MJ, Vandenberg DJ, Tromp M, Donneopdenkelder G, VanderVijgh WJF, Bast A (1996) Chem Res Toxicol 9:1305–1312

    Article  CAS  Google Scholar 

  29. Miller NJ, Riceevans C, Davies MJ, Gopinathan V, Milner A (1993) Clin Sci 84:407–412

    CAS  Google Scholar 

  30. Riceevans C, Miller NJ (1994) Methods Enzymol 234:279–293

    Article  CAS  Google Scholar 

  31. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  32. Parr RG, Yang WT (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  33. Parr RG, Von Szentpaly L, Liu SB (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  34. Pearson RG (1963) J Am Chem Soc 85:3533–3543

    Article  CAS  Google Scholar 

  35. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  36. Sen KD, Mingos DMP (1993) Chemical hardness: structure and Bonding. Springer, Berlin

    Google Scholar 

  37. Pearson RG (1997) Chemical Hardness. Wiley-VCH, New York

    Book  Google Scholar 

  38. Parr RG, Yang W (1989) Density Functional Theory of atoms and Molecules. Oxford University Press, Oxford

    Google Scholar 

  39. Parkinson CJ, Mayer PM, Radom L (1999) J Chem Soc Perkin 2:2305–2313

    Google Scholar 

  40. Fuentealba P, Florez E, Tiznado W J Chem Theory Comput 6:1470–1478 -

  41. Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) J Phys Chem A 109:3220–3224

    Article  CAS  Google Scholar 

  42. Chamorro E, Duque M, Cardenas C, Santos C, Tiznado W, Fuentealba P (2005) J Chem Sci 117:419–424

    Article  CAS  Google Scholar 

  43. Florez E, Tiznado W, Mondragon F, Fuentealba P (2005) J Phys Chem A 109:7815–7821

    Article  CAS  Google Scholar 

  44. Tiznado W, Oña OB, Bazterra VE, Caputo MC, Facelli JC, Ferraro MB, Fuentealba P (2005) J Chem Phys 123

  45. Tiznado W, Oña OB, Caputo MC, Ferraro MB, Fuentealba P (2009) J Chem Theory Comput 5:2265–2273

    Article  CAS  Google Scholar 

  46. Chandanshive JZ, Bonini BF, Tiznado W, Escobar CA, Caballero J, Femoni C, Fochi M, Franchini MC Eur. J Org Chem:4806–4813

  47. Osorio E, Ferraro MB, Ona OB, Cardenas C, Fuentealba P, Tiznado W J Chem Theory Comput 7:3995–4001

  48. Osorio E, Ferraro MB, Ona OB, Cardenas C, Fuentealba P, Tiznado W J Chem Theory Comput 7:3995–4001

  49. Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973–4975

    Article  CAS  Google Scholar 

  50. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  51. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  52. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  53. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  54. Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  55. Kohout M (2008) DGrid. Radebeul, Germany

  56. Mulder P, Korth HG, Ingold KU (2005) Helv Chim Acta 88:370–374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Millennium Scientific Initiative (Ministerio de Economía, Fomento y Turismo) (Grant P10-035-F), Fondo Nacional de Desarrollo Científico y Tecnológico (Grants: 11090431 and 11110241) and The Research Office of the University of Medellín, project 626. E.O. thanks to the Fondo de atracción a Postdoctorado, Universidad de Talca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Tiznado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osorio, E., Pérez, E.G., Areche, C. et al. Why is quercetin a better antioxidant than taxifolin? Theoretical study of mechanisms involving activated forms. J Mol Model 19, 2165–2172 (2013). https://doi.org/10.1007/s00894-012-1732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1732-5

Keywords