Skip to main content
Log in

Prodrugs of fumarate esters for the treatment of psoriasis and multiple sclerosis—a computational approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations at B3LYP/6-31 G (d,p) and B3LYP/6-311 + G(d,p) levels for the substituted pyridine-catalyzed isomerization of monomethyl maleate revealed that isomerization proceeds via four steps, with the rate-limiting step being proton transfer from the substituted pyridinium ion to the C=C double bond in INT1. In addition, it was found that the isomerization rate (maleate to fumarate) is solvent dependent. Polar solvents, such as water, tend to accelerate the isomerization rate, whereas apolar solvents, such as chloroform, act to slow down the reaction. A linear correlation was obtained between the isomerization activation energy and the dielectric constant of the solvent. Furthermore, linearity was achieved when the activation energy was plotted against the pK a value of the catalyst. Substituted-pyridine derivatives with high pK a values were able to catalyze isomerization more efficiently than those with low pK a values. The calculated relative rates for prodrugs 16 were: 1 (406.7), 2 (7.6 × 106), 3 (1.0), 4 (20.7), 5 (13.5) and 6 (2.2 × 103). This result indicates that isomerizations of prodrugs 1 and 35 are expected to be slow and that of prodrugs 2 and 6 are expected to be relatively fast. Hence, prodrugs 2 and 35 have the potential to be utilized as prodrugs for the slow release of monomethylfumarate in the treatment of psoriasis and multiple sclerosis.

Substituted pyridine-catalyzed isomerization of monomethylmaleate (prodrug, cis-isomer) to monomethylfumerate (parental drug, trans-isomer)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lohbeck K, Haferkorn H, Fuhrmann W, Fedtke N (2000) Maleic and fumaric acids. In: Ullmann's encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

  2. Nieboer C, de Hoop D, Langendijk PNJ, van Diijk E (1989) Systemic therapy with fumaric acid derivates: new possibilities in the treatment of psoriasis. Am Acad Dermatol 20:601–608

    Article  CAS  Google Scholar 

  3. Mrowietz U, Christophers E (1999) The German fumaric acid ester consensus conference. Br J Dermatol Sep 141(3):424–429

    Article  CAS  Google Scholar 

  4. Treumer F, Zhu K, Gläser R, Mrowietz U (2003) Dimethylfumarate is a potent inducer of apoptosis in human T cells. J Invest Dermatol 121:1383–1388

    Article  CAS  Google Scholar 

  5. Litjens NH, van Strijen E, van Gulpen C, Mattie H, van Dissel JT, Thio HB, Nibbering PH (2004) In vitro pharmacokinetics of anti-psoriatic fumaric acid esters. BMC Pharmacol 4:22

    Article  Google Scholar 

  6. Fachinformation zu Fumaderm® initial/Fumaderm® (1996) Fumedica Arzneimittel GmbH, Heme

  7. Naldi L, Rzany B (2002) Chronic plaque psoriasis. Clin Evid 8:688–708

    Google Scholar 

  8. Karaman R, Hallak H (2010) Anti-malarial Pro-drugs- a computational aided design. Chem Biol Drug Des 76:350–360

    Article  CAS  Google Scholar 

  9. Karaman R (2010) Prodrugs of Aza nucleosides based on proton transfer reactions. J Comput Mol Des 24:961–970

    Article  CAS  Google Scholar 

  10. Karaman R (2011) Computational aided design for dopamine prodrugs based on novel chemical approach. Chem Biol Drug Des 78:853–863

    Article  CAS  Google Scholar 

  11. Hejaz H, Karaman R, Khamis K (2012) Computer-assisted design for paracetamol masking bitter taste prodrugs. J Mol Model 18:103–114

    Article  CAS  Google Scholar 

  12. Karaman R, Dajani KK, Hallak H (2012) Computer-assisted design for atenolol prodrugs for the Use in aqueous formulations. J Mol Model 18:1523–1540

    Article  CAS  Google Scholar 

  13. Karaman R (2012) Exploring the mechanism for the amine-catalyzed isomerization of dimethyl maleate. A computational study. Tetrahedron Lett 52:6288–6292

    Article  Google Scholar 

  14. Clemo GR, Graham B (1930) XXX—The cis-trans ethenoid transformation. J Chem Soc 213–215

  15. Nozaki K (1941) cis-trans isomerizations. 11. The mechanism of the amine catalyzed isomerization of diethyl maleate. J Am Chem Soc 63:2681–2683

    Article  CAS  Google Scholar 

  16. Kodomari M, Sakamoto T, Yoshitomi S (1989) Stereoselective bromination of acetylenes with bromine in the presence of graphite Bull. Chem Soc Jpn 62:4053–4054

    Article  CAS  Google Scholar 

  17. Baag MM, Kar A, Argade NP (2003) N-Bromosuccinimide-dibenzoyl peroxide/azabisisobutyronitrile: a reagent for Z- to E-alkene isomerization. Tetrahedron 59:6489–6492

    Article  CAS  Google Scholar 

  18. Rappoport Z, Degani CD, Patal S (1963) Nucleophilic attacks on carbon-carbon double bonds. Part VI.l Amine-catalysed cis-trans-isosmerisation of ethyl a-cyano-p-O-methoxyphenylacrylate through a zupitterionic carbanion in benzene. J Chem Soc 1963:4513–4520

  19. Cook AG, Voges AB, Kammrath AE (2001) Aminal-catalyzed isomerization of and addition to dimethyl maleate. Tetrahedron Lett 42:7349–7352

    Article  CAS  Google Scholar 

  20. Janus E, Lozynski M, Pernak J (2006) Protic, imidazolium ionic liquids as media for (Z)- to (E)-alkene isomerization. Chem Lett 35:210–211

    Article  CAS  Google Scholar 

  21. Trask AV, Motherwell WDS, Jones W (2006) Physical stability enhancement of theophylline via cocrystallization. Int J Pharm 320:114–123

    Article  CAS  Google Scholar 

  22. Serajuddin ATM, Puddipeddi M (2002) Salt selection strategies. In: Stahl PH, Wermuth CG (eds) Handbook of pharmaceutical salts. VHCA and Wiley-VCH, Weinheim

    Google Scholar 

  23. Desiraju GR (2003) Crystal and co-crystal. Cryst Eng Commun 5:466–467

    CAS  Google Scholar 

  24. Dunitz JD (2003) Crystal and co-crystal: a second opinion. Cryst Eng Commun 5:506–506

    CAS  Google Scholar 

  25. Aakeroy CB, Salmon DJ (2005) Building co-crystals with molecular sense and supramolecular sensibility. Cryst Eng Commun 7:439–448

    Google Scholar 

  26. Chatterjee S, Pedireddi VR, Rao CNR (1998) Unexpected isomerization of maleic acid to fumaric acid on co-crystallization with 4,4′-bipyridine. Tetrahedron Lett 39:2843–2846

    Article  CAS  Google Scholar 

  27. Mohamed S, Tocher DA, Vickers M, Karamertzanis PG, Price SL (2009) Salt or cocrystal? A new series of crystal structures formed from simple pyridines and carboxylic acids. Crystal Growth Design 9:2881–2889

    Article  CAS  Google Scholar 

  28. Karaman R (2008) Analysis of Menger’s spatiotemporal hypothesis. Tetrahedron Lett 49:5998–6002

    Article  CAS  Google Scholar 

  29. Karaman R (2009) A new mathematical equation relating activation energy to bond angle and distance: a key for understanding the role of acceleration in the lactonization of the trimethyl lock system. Bioorg Chem 37:11–25

    Article  CAS  Google Scholar 

  30. Karaman R (2009) Reevaluation of Bruice’s proximity orientation. Tetrahedron Lett 50:452–456

    Article  CAS  Google Scholar 

  31. Karaman R (2009) Accelerations in the lactonization of trimethyl lock systems is due to proximity orientation and not to strain effects. Res Lett Org Chem. doi:10.1155/2009/240253, 5 pages

  32. Karaman R (2009) The effective molarity (EM) puzzle in proton transfer reactions. Bioorg Chem 37:106–110

    Article  CAS  Google Scholar 

  33. Karaman R (2009) Cleavage of Menger’s aliphatic amide: a model for peptidase enzyme solely explained by proximity orientation in intramolecular proton transfer. J Mol Struct (THEOCHEM) 910:27–33

    Article  CAS  Google Scholar 

  34. Karaman R (2009) The gem-disubstituent effect-computational study that exposes the relevance of existing theoretical models. Tetrahedron Lett 50:6083–6087

    Article  CAS  Google Scholar 

  35. Karaman R (2010) Effects of substitution on the effective molarity (EM) for five membered ring-closure reactions- a computational approach. J Mol Struct (THEOCHEM) 939:69–74

    Article  CAS  Google Scholar 

  36. Karaman R (2009) Analyzing Kirby’s amine olefin – a model for amino-acid ammonia lyases. Tetrahedron Lett 50:7304–7309

    Article  CAS  Google Scholar 

  37. Karaman R (2010) The effective molarity (EM) puzzle in intramolecular ring-closing reactions. J Mol Struct (THEOCHEM) 940:70–75

    Article  CAS  Google Scholar 

  38. Karaman R (2010) The efficiency of proton transfer in Kirby’s enzyme model, a computational approach. Tetrahedron Lett 51:2130–2135

    Article  CAS  Google Scholar 

  39. Karaman R (2010) Proximity vs strain in ring-closing reactions of bifunctional chain molecules—a computational approach. J Mol Phys 108:1723–1730

    Article  CAS  Google Scholar 

  40. Karaman R (2010) The effective molarity (EM)—a computational approach. Bioorg Chem 38:165–172

    Article  CAS  Google Scholar 

  41. Karaman R (2010) A general equation correlating intramolecular rates with “attack” parameters distance and angle. Tetrahedron Lett 51:5185–5190

    Article  CAS  Google Scholar 

  42. Karaman R, Alfalah S (2010) Multi transition states in SN2 intramolecular reactions. Int Rev Biophys Chem 1:14–23

    Google Scholar 

  43. Karaman R, Pascal R (2010) A computational analysis of intramolecularity in proton transfer reactions. Org Biomol Chem 8:5174–5178

    Article  CAS  Google Scholar 

  44. Becke AD (1993) Density–functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  45. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev 37:785–789

    Article  CAS  Google Scholar 

  46. Stevens PG, Devlin FG, Chablowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  Google Scholar 

  47. Frisch MJ et al (2009) Gaussian, Revision A.7. Gaussian Inc, Pittsburgh

    Google Scholar 

  48. Casewit CJ, Colwell KS, Rappe’ AK (1992) Application of a universal force field to main group compounds. J Am Chem Soc 114:10046–10053

    Article  CAS  Google Scholar 

  49. Murrell JN, Laidler KJ (1968) Symmetries of activated complexes. Trans Faraday Soc 64:371–377

    Article  CAS  Google Scholar 

  50. Muller K (1890) Reaction paths on multidimensional energy hypersurfaces. Angew Chem Int Ed Engl 19:1–13

    Article  Google Scholar 

  51. Cancès MT, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  52. Mennucci B, Tomasi J (1997) A new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  53. Mennucci B, Cancès MT, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  54. Tomasi J, Mennucci B, Cancès MT (1997) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (THEOCHEM) 464:211–226

    Article  Google Scholar 

  55. Zhao GJ, Han KL (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45:404–413

    Article  CAS  Google Scholar 

  56. Zhao GJ, Liu JY, Zhou LC, Han KL (2007) Site-selective photoinduced electron transfer from alcoholic solvents to chromophores facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111:894–8945

    Google Scholar 

  57. Zhao GJ, Han KL (2008) Site-specific salvation of the photoexcited protochlorophyllide a in methanol: Formation of the hydrogen bonded intermediate state induced by hydrogen-bond strengthening. Biophys J 94:38–46

    Article  CAS  Google Scholar 

  58. Brown HC et al (1955) In: Braude EA, Nachod FC (eds) Determination of organic structures by physical methods. Academic, New York

    Google Scholar 

Download references

Acknowledgments

The Karaman Co. and the German-Palestinian-Israeli fund agency are thanked for support of our computational facilities. Special thanks are also given to Angi Karaman, Donia Karaman, Rowan Karaman and Nardene Karaman for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafik Karaman.

Electronic supplementary materials

Xyz Cartesian coordinates for the calculated optimized structures for 1 Cis-6 Cis , 1TS1-6TS1, 1INT1 - 6INT1, 1TS2-6TS2, 1INT2-6INT2, 1TS3-6TS3, 1INT3-6INT3, 1P (Trans Drug )-6P (Trans Drug ). Table S1: Dft calculated properties for the moieties involved in the isomerization reactions of 16. Fig. S1a-1e: DFT optimized structures for 1TS1-6TS1, 1INT1-6INT1, 1INT2-6INT2, 1TS3-6TS3 and 1INT3-6INT3.

ESM 1

(DOC 1374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaman, R., Dokmak, G., Bader, M. et al. Prodrugs of fumarate esters for the treatment of psoriasis and multiple sclerosis—a computational approach. J Mol Model 19, 439–452 (2013). https://doi.org/10.1007/s00894-012-1554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1554-5

Keywords

Navigation