Skip to main content
Log in

Investigation of H-bonding and halogen-bonding effects in dichloroacetic acid: DFT calculations of NQR parameters and QTAIM analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A theoretical study was performed to examine hydrogen and halogen bonds properties in gas phase and crystalline dichloroacetic acid (DCAA). The specific pattern of O–H∙∙∙O, C–H∙∙∙O, HCl, Cl∙∙∙O and Cl∙∙∙Cl interactions in DCAA dimers is described within the quantum theory of atoms in molecules (QTAIM) formalism. Based on QTAIM results, a partial covalent character is attributed to the O–H∙∙∙O hydrogen bonds in DCAA, whereas all the C–H∙∙∙O, Cl···O and Cl∙∙∙Cl intermolecular interactions are weak and basically electrostatic in nature. MP2/6-311++G** calculations indicate that the interaction energies for DCAA dimers lie in the range between -0.40 and -14.58 kcal mol-1. One of the most important results of this study is that, according to energy decomposition analyses, halogen bonds are largely dependent on both electrostatic and dispersion interactions. For those nuclei participating in the hydrogen-bonding and halogen-bonding interactions, nuclear quadrupole coupling constants exhibit significant changes on going from the isolated molecule model to the crystalline DCAA. Of course, the magnitude of these changes at each nucleus depends directly on its amount of contribution to the interactions.

The electrostatic potential mapped on the surface of DCAA molecular electron density (0.001 e au-3). Color ranges for VS(r), in kcal mol−1: red > 37.6, yellow 37.6–15.1, green 15.1– -7.1, blue < -7.1. Black circles surface maxima, blue surface minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Woo HK, Wang XB, Wang LS, Lu KC (2005) Probing the low-barrier hydrogen bond in hydrogen maleate in the gas phase: a photoelectron spectroscopy and ab initio study. J Phys Chem A 109:10633–10637

    Article  CAS  Google Scholar 

  2. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  3. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in σ-hole bonding. J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  4. Scheiner S (1997) Hydrogen bonding: a theoretical prospective. Oxford University Press, Oxford UK

    Google Scholar 

  5. Behzadi H, Esrafili M, Hadipour NL (2007) A theoretical study of 17O, 14N and 2H nuclear quadrupole coupling tensors in the real crystalline structure of acetaminophen. Chem Phys 333:97–103

    Article  CAS  Google Scholar 

  6. Esrafili MD, Behzadi H, Hadipour NL (2008) 14N and 17O electric field gradient tensors in benzamide clusters: theoretical evidence for cooperative and electronic delocalization effects in N–H···O hydrogen bonding. Chem Phys 348:175–180

    Article  CAS  Google Scholar 

  7. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  8. Richardson TB, de Gala S, Crabtree RH, Siegbahn PEM (1995) Unconventional hydrogen bonds: intermolecular B-H…H-N Interactions. J Am Chem Soc 117:12875–12786

    Article  CAS  Google Scholar 

  9. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  10. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br···O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theor Comput 5:155–163

    Article  CAS  Google Scholar 

  11. Bent HA (1968) Structural chemistry of donor-acceptor interactions. Chem Rev 68:587–648

    Article  CAS  Google Scholar 

  12. Hassel O (1970) Structural aspects of interatomic charge-transfer bonding. Science 170:497–502

    Article  CAS  Google Scholar 

  13. Bernard-Houplain MC, Sandorfy C (1973) Low temperature infrared study of hydrogen bonding in dissolved pyrrole and indole. Can J Chem 51:1075–1082

    Article  CAS  Google Scholar 

  14. Bernard-Houplain MC, Sandorfy C (1973) A low temperature infrared study of hydrogen bonding in N-Alkylacetamides. Can J Chem 51:3640–3646

    Article  CAS  Google Scholar 

  15. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  16. Jiang Y, Alcaraz AA, Chen JM, Kobayashi H, Lu YJ, Snyder JP (2006) Diastereomers of dibromo-7-epi-10-deacetylcephalomannine: crowded and cytotoxic taxanes. Exhibit halogen bonds. J Med Chem 49:1891–1899

    Article  CAS  Google Scholar 

  17. Lopez-Rodriguez ML, Murcia M, Benhamu B, Viso A, Campillo M, Pardo L (2002) Benzimidazole derivatives. 3. 3D-QSAR/CoMFA model and computational simulation for the recognition of 5-HT(4) receptor antagonists. J Med Chem 45:4806–4815

    Article  CAS  Google Scholar 

  18. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  19. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  20. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  21. Murray-Rust P, Motherwell WDS (1979) Computer retrieval and analysis of molecular geometry. 4. Intermolecular interactions. J Am Chem Soc 101:4374–4376

    Article  CAS  Google Scholar 

  22. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) Intermolecular interactions of the carbon-fluorine bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J Am Chem Soc 105:3206–3214

    Article  CAS  Google Scholar 

  23. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bond. J Am Chem Soc 108:4308–4314

    Article  CAS  Google Scholar 

  24. Politzer P, Murray JS, Concha MC (2008) σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  25. Trogdon G, Murray JS, Concha MC, Politzer P (2007) Molecular surface electrostatic potentials and anesthetic activity. J Mol Model 13:313–318

    Article  CAS  Google Scholar 

  26. Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) The nature of halogen···halogen synthons: crystallographic and theoretical studies. Chem Eur J 12:8952–8960

    Article  CAS  Google Scholar 

  27. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G (2011) The fluorine atom as a halogen bond donor, viz. a positive site. Cryst Eng Comm 13:6593–6596

    CAS  Google Scholar 

  28. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Fluorine-centered halogen bonding: a factor in recognition phenomena and reactivity. Cryst Growth Des 11:4238–4246

    Article  CAS  Google Scholar 

  29. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J Am Chem Soc 118:3108–3116

    Article  CAS  Google Scholar 

  30. Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theor Comput 4:232–242

    Article  CAS  Google Scholar 

  31. Gajda R, Katrusiak A (2007) Compressed hydrogen-bond effects in the pressurefrozen chloroacetic acid. Acta Cryst B63:896–902

    CAS  Google Scholar 

  32. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  33. Wamg W, Hobza P (2008) Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes

  34. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  35. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  36. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, New York

    Google Scholar 

  37. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM 2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  38. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  39. Lucken EAC (1990) Nuclear quadrupole coupling constants. Academic, London

    Google Scholar 

  40. Pyykkö P (2001) Spectroscopic nuclear quadrupole moment. Mol Phys 99:1617–1629

    Article  Google Scholar 

  41. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  42. Bulat FA, Toro-Labbé A, “WFA: A suite of programs to analyse wavefunctions”, unpublished

  43. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  44. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  45. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  46. Perlstein J, Steppe K, Vaday S, Ndip EMN (1996) Molecular self-assemblies. 5. Analysis of the vector properties of hydrogen bonding in crystal engineering. J Am Chem Soc 118:8433–8443

    Article  CAS  Google Scholar 

  47. Lu YX, Zou JW, Wang YH, Jiang YJ, Yu QS (2007) Ab Initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions. J Phys Chem A 111:10781–10788

    Article  CAS  Google Scholar 

  48. Wang S (2010) Properties of halogen bonds in FArCCX···HMY (X = Cl and Br; M = Be and Mg; Y = H, F, and CH3) complexes: An ab initio and topological analysis. J Mol Struct THEOCHEM 952:115–119

    Article  CAS  Google Scholar 

  49. Duarte DJ, de las Vallejos MM (2010) Topological analysis of aromatic halogen/hydrogen bonds by electron charge density and electrostatic potentials. J Mol Model 16:737–748

    Article  CAS  Google Scholar 

  50. Esrafili MD, Hadipour NL (2011) Characteristics and nature of halogen bonds in linear clusters of NCX (X=Cl, and Br): an ab initio, NBO and QTAIM study. 109:2451–2460

    Google Scholar 

  51. Esrafili MD, Behzadi H, Beheshtian J, Hadipour NL (2008) Theoretical 14N nuclear quadrupole resonance parameters for sulfa drugs: Sulfamerazine and sulfathiazole. J Mol Graphics Modell 27:326–331

    Article  CAS  Google Scholar 

  52. Rozas I, Alkorta I, Elguero (2000) Behaviour of ylides containing N, O and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  53. Popelier P (2000) Atoms in molecules, an introduction. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  54. Murray JS, Lane P, Clark T, Politzer P (2007) σ-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  55. Brinck T, Murray JS, Politzer P (1993) Molecular surface electrostatic potentials and local ionization energies of Group V–VII hydrides and their anions: relationships for aqueous and gas-phase acidities. Int J Quantum Chem 48:73–88

    Article  CAS  Google Scholar 

  56. Colominas C, Teixidó J, Cemeli J, Luque FJ, Orozco M (1998) Dimerization of carboxylic acids: reliability of theoretical calculations and the effect of solvent. J Phys Chem B 102:2269–2276

    Article  CAS  Google Scholar 

  57. Chocholousova J, Vacek J, Hobza P (2003) Acetic acid dimer in the gas phase, nonpolar solvent, microhydrated environment, and dilute and concentrated acetic acid: Ab initio quantum chemical and molecular dynamics simulations. J Phys Chem A 107:3086–3092

    Article  CAS  Google Scholar 

  58. Salvador P, Simon S, Duran M, Dannenberg JJ (2000) C–H⋯O H-bonded complexes: how does basis set superposition error change their potential-energy surfaces? J Chem Phys 113:5666–5674

    Article  CAS  Google Scholar 

  59. Palusiak M (2010) On the nature of halogen bond – The Kohn–Sham molecular orbital approach. J Mol Struct THEOCHEM 945:89–92

    Article  CAS  Google Scholar 

  60. Langlet J, Caillet J, Bergès RP (2003) Comparison of two ways to decompose intermolecular interactions for hydrogen-bonded dimer systems. J Chem Phys 118:6157–6166

    Article  CAS  Google Scholar 

  61. Brosnan SGP, Edmonds DT, Poplett IJF (1981) J Magn Reson 45:451–460

    CAS  Google Scholar 

  62. Poplett JF, Smith JAS (1981) 17O and 2H quadrupole double resonance in some carboxylic acid dimers. J Chem Soc Faraday Trans 277:1473–1485

    Google Scholar 

  63. Berglund B, Lindgren J, Tegenfeldt J (1987) On the correlation between deuteron quadrupole coupling constants, O-H and O-D stretching frequencies and hydrogen-bond distances in solid hydrates. J Mol Struct 43:179–181

    Article  Google Scholar 

  64. Esrafili M, Behzadi H, Hadipour NL (2008) Density functional theory study of N–H⋯O, O–H⋯O and C–H⋯O hydrogen-bonding effects on the 14N and 2H nuclear quadrupole coupling tensors of N-acetyl-valine. Biophys Chem 133:11–18

    Article  CAS  Google Scholar 

  65. Ida R, Clerk MD, Wu G (2006) Influence of N-H⋯O and C-H⋯O hydrogen bonds on the 17O NMR tensors in crystalline uracil: computational study. J Phys Chem A 110:1065–1071

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esrafili, M.D. Investigation of H-bonding and halogen-bonding effects in dichloroacetic acid: DFT calculations of NQR parameters and QTAIM analysis. J Mol Model 18, 5005–5016 (2012). https://doi.org/10.1007/s00894-012-1496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1496-y

Keywords

Navigation