Skip to main content
Log in

Conserved water-mediated H-bonding dynamics of catalytic His159 and Asp158: insight into a possible acid–base coupled mechanism in plant thiol protease

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cysteine protease is ubiquitous in nature. Excess activity of this enzyme causes intercellular proteolysis, muscle tissue degradation, etc. The role of water-mediated interactions in the stabilization of catalytically significant Asp158 and His159 was investigated by performing molecular dynamics simulation studies of 16 three-dimensional structures of plant thiol proteases. In the simulated structures, the hydrophilic W1, W2 and WD1 centers form hydrogen bonds with the OD1 atom of Asp158 and the ND1 atom of His159. In the solvated structures, another water molecule, WE, forms a hydrogen bond with the NE2 atom of His159. In the absence of the water molecule WE, Trp177 (NE1) and Gln19 (NE2) directly interact with the NE2 atom of His159. All these hydrophilic centers (the locations of W1, W2, WD1, and WE) are conserved, and they play a critical role in the stabilization of His–Asp complexes. In the water dynamics of solvated structures, the water molecules W1 and W2 form a water...water hydrogen-bonded network with a few other water molecules. A few dynamical conformations or transition states involving direct (His159 ND1...Asp158 OD1) and water-mediated (His159 ND1...W2...Asp158 OD1) hydrogen-bonded complexes are envisaged from these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Otto HH, Schirmeister T (1997) Chem Rev 97:133–171

    Article  CAS  Google Scholar 

  2. Komatsu K, Tsukuda K, Hosoya J, Satoh S (1986) Exp Neurol 93:642–646

    Article  CAS  Google Scholar 

  3. Sloane BF, Moin K, Krepela E, Rozhin J (1990) Cancer Metastasis Rev 9:333–352

    Article  CAS  Google Scholar 

  4. Lecaille F, Kaleta J, Bromme D (2002) Chem Rev 102:4459–4488

    Article  CAS  Google Scholar 

  5. Huet G, Flip RM, Richet C, Thiebet C, Demeyer D, Balduyck M, Duquesnoy B, Degand P (1992) Clin Chem 38:1694–1697

    CAS  Google Scholar 

  6. Polgár L (1974) FEBS Lett 47:15–18

    Article  Google Scholar 

  7. Vernet T, Tessier DC, Chatellier J, Plouffe C, Lee TS, Thomas DY, Storer AC, Menard R (1995) J Biol Chem 270:16645–16652

    Article  CAS  Google Scholar 

  8. Harrison MJ, Burton NA, Hillier IH (1997) J Am Chem Soc 119:12285–12291

    Article  CAS  Google Scholar 

  9. O’Farrell PA, Joshua-Tor L (2007) Biochem J 401:421–428

    Article  Google Scholar 

  10. Mladenovic M, Fink RF, Thiel W, Schirmeister T, Engels B (2008) J Am Chem Soc 130:8696–8705

    Article  CAS  Google Scholar 

  11. Nandi TK, Bairagya HR, Mukhopadhyay BP, Sekar K, Sukul D, Bera AK (2009) J Biosci 34:27–34

    Article  CAS  Google Scholar 

  12. Menard R, Khouri HE, Plouffe C, Laflamme P, Durpras R, Vernet T, Tessier DC, Thomas DY, Storer AC (1991) Biochemistry 30:5531–5538

    Article  CAS  Google Scholar 

  13. Wang J, Xiang YF, Lim C (1994) Protein Eng Des Sel 7:75–82

    Article  CAS  Google Scholar 

  14. Dijkman JP, Van Duijnen PTh (1991) Int J Quant Chem 40:49–59

    Article  Google Scholar 

  15. Welsh WJ, Lin Y (1997) J Mol Struct THEOCHEM 401:315–326

    Google Scholar 

  16. Day RM, Thalhauser CJ, Sudmeier JL, Vincent MP, Torchilin EV, Sanford DG, Bachovchin CW, Bachovchin WW (2003) Protein Sci 12:794–810

    Article  CAS  Google Scholar 

  17. Berman HM, Westbrook J, Feng Z, Gilli G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  18. Pickersgill RW, Harris GW, Garman E (1992) Acta Crystallogr Sect B 48:59–67

    Article  Google Scholar 

  19. Kamphuis IG, Kalk KH, Swarte MB, Drenth J (1984) J Mol Biol 179:233–256

    Article  CAS  Google Scholar 

  20. Yamamoto D, Matsumoto K, Ohishi H, Ishida T, Inoue M, Kitamura K, Mizuno H (1991) J Biol Chem 266:14771–14777

    CAS  Google Scholar 

  21. Kim MJ, Yamamoto D, Matsumoto K, Inoue M, Ishida T, Mizuno H, Sumiya S, Kitamura K (1992) Biochem J 287:797–803

    CAS  Google Scholar 

  22. Janowski R, Kozak M, Jankowska E, Grzonka Z, Jaskolski M (2004) J Pept Res 64:141–150

    Article  CAS  Google Scholar 

  23. LaLonde JM, Zhao B, Smith WW, Janson CA, DesJarlais RL, Tomaszek TA, Carr TJ, Thompson SK, Oh HJ, Yamashita DS, Veber DF, Abdel-Meguid SS (1998) J Med Chem 41:4567–4576

    Article  CAS  Google Scholar 

  24. Varughese KI, Su Y, Cromwell D, Hasnain S, Xuong NH (1992) Biochemistry 31:5172–5176

    Article  CAS  Google Scholar 

  25. Baker EN, Dodson EJ (1980) Acta Crystallogr Sect A 36:559–572

    Article  Google Scholar 

  26. Katerelos NA, Taylor MA, Scott M, Goodenough PW, Pickersgill RW (1996) FEBS Lett 392:35–39

    Article  CAS  Google Scholar 

  27. Maes D, Bouckaert J, Poortmans F, Wyns L, Looze Y (1996) Biochemistry 35:16292–16298

    Article  CAS  Google Scholar 

  28. O’Hara BP, Hemmings AM, Buttle DJ, Pearl LH (1995) Biochemistry 34:13190–13195

    Article  Google Scholar 

  29. Biswas S, Chakrabarti C, Kundu S, Jagannadham MV, Dattagupta JK (2003) Proteins 51:489–497

    Article  CAS  Google Scholar 

  30. Ghosh R, Dattagupta JK, Biswas S (2007) Biochem Biophys Res Commun 362:965–970

    Article  CAS  Google Scholar 

  31. Choi KH, Laursen RA, Allen KN (1999) Biochemistry 38:11624–11633

    Article  CAS  Google Scholar 

  32. Guex N, Diem A, Peitsch MC, Schwede T (2001) The deep view—the Swiss-PdbView program, an environment for comparative protein modeling. GlaxoSmithKline R&D, London

  33. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  34. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  35. Nelson M, Humphrey W, Gursoy A, Dalke A, Kale L, Skeel RD, Schulten K (1996) Int J Supercomput Appl High Perform Comput 10:251–268

    Article  Google Scholar 

  36. Phillips JC, Braun R, Wang W, Gumbart J, Emad Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  37. Fleming PJ, Nicholas C, Fitzkee MM, Rajgopal S, George DR (2005) Protein Sci 14:111–118

    Article  CAS  Google Scholar 

  38. Bairagya HR, Mukhopadhyay BP, Sekar K (2009) J Bio Struct Dyn 26:497–507

    Article  CAS  Google Scholar 

  39. Bairagya HR, Mukhopadhyay BP, Sekar K (2009) J Bio Struct Dyn 27:149–158

    Article  CAS  Google Scholar 

  40. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) Nucleic Acids Res 33:382–388

    Article  Google Scholar 

  41. Mustata G, Briggs JM (2004) Protein Eng Des Sel 17:223–234

    Article  CAS  Google Scholar 

  42. Gul S, Hussain S, Thomas MP, Resmini M, Verma CS, Thomas EW, Brocklehurst K (2008) Biochemistry 47:2025–2035

    Article  CAS  Google Scholar 

  43. Stollar EJ, Gelpi JL, Velankar S, Golovin A, Orozco M, Luisi BF (2004) Proteins 57:1–8

    Article  CAS  Google Scholar 

  44. Sulpizi M, Rothlisberger U, Carloni P (2003) Biophys J 84:2207–2215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank and acknowledge the National Institute of Technology Durgapur for providing a research facility in the Department of Chemistry. We also thank and acknowledge Dr. K Sekar, Indian Institute of Science, Bangalore, India, for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishnu P. Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandi, T.K., Bairagya, H.R., Mukhopadhyay, B.P. et al. Conserved water-mediated H-bonding dynamics of catalytic His159 and Asp158: insight into a possible acid–base coupled mechanism in plant thiol protease. J Mol Model 18, 2633–2644 (2012). https://doi.org/10.1007/s00894-011-1277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1277-z

Keywords

Navigation