Skip to main content

Advertisement

Log in

Exploration of the binding of curcumin analogues to human P450 2C9 based on docking and molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular docking and molecular dynamics (MD) simulations are used to investigate the interactions of curcumin analogues (CAs) with human cytochrome P450 2 C9 (CYP2C9 or 2 C9) and the conformations of their binding sites. In order to examine conformations of CAs/2 C9 and interaction characteristics of their binding sites, RMSDs, RMSFs, and B-factors are computed, and electrostatic and hydrophobic interactions between CAs and 2 C9 are analyzed and discussed. Results demonstrate that the most CAs studied lie 4 ∼ 15 Å above the heme of CYP2C9. The presence of CAs makes some residues in bound CYP2C9s become more flexible. In the binding sites of A0/2 C9 and C0/2 C9, the formation of H-bond networks (or CA-water-residue bridges) enhances the interactions between CAs and 2 C9. The stronger inhibitory effects of A0, B0, and C0 on 2 C9 can be ascribed to stronger electrostatic and hydrophobic interactions in the binding sites of CAs/2 C9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gajendrarao P, Krishnamoorthy N, Sakkiah S, Lazar P, Lee KW (2010) Molecular modeling study on orphan human protein CYP4A22 for identification of potential ligand binding site. J Mol Graphics Model 28:524–532

    Article  CAS  Google Scholar 

  2. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    Article  CAS  Google Scholar 

  3. Fishelovitch D, Hazan C, Shaik S, Wolfson HJ, Nussinov R (2007) Structural dynamics of the cooperative binding of organic molecules in the human cytochrome P450 3A4. J Am Chem Soc 129:1603–1611

    Article  Google Scholar 

  4. Skopalík J, Anzenbacher P, Otyepka M (2008) Flexibility of human cytochromes P450: Molecular dynamics reveals differences between CYPs 3A4, 2 C9, and 2A6, which correlate with their substrate preferences. J Phys Chem B 112:8165–8173

    Article  Google Scholar 

  5. Bathelt CM, Mulholland AJ, Harvey JN (2008) QM/MM modeling of benzene hydroxylation in human cytochrome P450 2 C9. J Phys Chem A 112:13149–13156

    Article  CAS  Google Scholar 

  6. Ahlström MM, Ridderström M, Zamora I (2007) CYP2C9 structure metabolism relationships: Substrates, inhibitors, and metabolites. J Med Chem 50:5382–5391

    Article  Google Scholar 

  7. Eitrich T, Kless A, Druska C, Meyer W, Grotendorst J (2007) Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. J Chem Inf Model 47:92–103

    Article  CAS  Google Scholar 

  8. Bibi Z (2008) Role of cytochrome P450 in drug interactions. Nutr Metab 5:27–36

    Article  Google Scholar 

  9. Afzelius L, Raubacher F, Karlén A, Jørgensen FS, Andersson TB, Masimirembwa CM, Zamora I (2004) Structual analysis of CYP2C9 and CYP2C5 and an evaluation of commonly used molecular modelling techniques. Drug Metab Dispos 32:1218–1229

    CAS  Google Scholar 

  10. Roberts AG, Cheesman MJ, Primak A, Bowman MK, Atkins WM, Rettie AE (2010) Intramolecular heme ligation of the CYP2C9 R108H mutant demonstrates pronounced conformational flexibility of the B-C loop region: implications for substrate binding. Biochemistry 49:8700–8708

    Article  CAS  Google Scholar 

  11. Korzekwa KR, Krishnamachary N, Shou M, Ogai A, Parise RA, Rettie AE, Gonzalez FJ, Tracy TS (1998) Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 37:4137–4147

    Article  CAS  Google Scholar 

  12. Hutzler JM, Kolwankar D, Hummel MA, Tracy TS (2002) Activation of CYP2C9-mediated metabolism by a series of dapsone analogues: kinetics and structural requirements. Drug Metab Dispos 30:1194–1200

    Article  CAS  Google Scholar 

  13. Williams PA, Cosme J, Vinkovic DM, Ward A, Angoven HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686

    Article  CAS  Google Scholar 

  14. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J Biol Chem 279:38091–38094

    Article  CAS  Google Scholar 

  15. Williams PA, Cosme J, Ward A, Angove HC, Vinkovic DM, Jhoti H (2003) Crystal structure of human cytochrome P450 2 C9 with bound warfarin. Nature 424:464–468

    Article  CAS  Google Scholar 

  16. Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human cytochrome P450 2 C9 complexed with flurbiprofen at 2.0-Å resolution. J Biol Chem 279:35630–35637

    Article  CAS  Google Scholar 

  17. Scott EE, He YA, Wester MR, White MA, Chin CC, Halpert JR, Johnson EF, Stout CD (2003) An open conformation of mammalian cytochrome P450 2B4 at 1.6-Å resolution. Proc Natl Acad Sci USA 100:13196–13201

    Article  CAS  Google Scholar 

  18. Yano JK, Hsu MH, Griffin KJ, Stout CD, Johnson EF (2005) The structure of human microsomal cytochrome P450 2A6 with coumarin and methoxsalen bound. Nat Struct Mol Biol 12:822–823

    Article  CAS  Google Scholar 

  19. Schoch GA, Yano JK, Wester MR, Griffin KJ, Stout CD, Johnson EF (2004) Structure of human microsomal cytochrome P450 2 C8. J Biol Chem 279:9497–9503

    Article  CAS  Google Scholar 

  20. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131

    Article  CAS  Google Scholar 

  21. Arimoto R (2006) Computational models for predicting interactions with cytochrome P450 enzyme. Curr Top Med Chem 6:1609–1618

    Article  CAS  Google Scholar 

  22. Kins S, de Groot MJ, Jones JP (2001) Pharmacophore and three dimensional quantitative structure activity relationship methods for modeling cytochrome P450 active sites. Drug Metab Dispos 29:936–944

    Google Scholar 

  23. de Graaf C, Vermeulen NP, Feenstra KA (2005) Cytochrome P450 in silico: an integrative modeling approach. J Med Chem 48:2725–2755

    Article  Google Scholar 

  24. de Groot MJ, Kirton SB, Sutcliffe MJ (2004) In silico methods for predicting ligand binding determinants of cytochromes P450. Curr Top Med Chem 4:1803–1824

    Article  Google Scholar 

  25. Boyer S, Zamora I (2002) New methods in predictive metabolism. J Comput Aided Mol Des 16:403–413

    Article  CAS  Google Scholar 

  26. de Groot MJ (2006) Designing better drugs: predicting cytochrome P450 metabolism. Drug Discov Today 11:601–606

    Article  Google Scholar 

  27. Locuson CW, Rock DA, Jones JP (2004) Quantitative binding models for CYP2C9 based on benzbromarone analogues. Biochemistry 43:6948–6958

    Article  CAS  Google Scholar 

  28. Yasuo K, Yamaotsu N, Gouda H, Tsujishita H, Hirono S (2009) Structure based CoMFA as a predictive model-CYP2C9 inhibitors as a test case. J Chem Inf Model 49:853–864

    Article  CAS  Google Scholar 

  29. Yao Y, Han WW, Zhou YH, Li ZS (2007) Molecular docking study of the affinity of CYP2C9 and CYP2D6 for imrecoxib. J Theor Comput Chem 6:541–548

    Article  CAS  Google Scholar 

  30. Jones DR, Kim SY, Guderyon M, Yun CH, Moran JH, Miller GP (2010) Hydroxywarfarin metabolites potently inhibit CYP2C9 metabolism of S-warfarin. Chem Res Toxicol 23:939–945

    Article  CAS  Google Scholar 

  31. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  Google Scholar 

  32. Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, Vermeulen NP (2007) Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products. Toxicology 235:83–91

    Article  CAS  Google Scholar 

  33. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the indian solid gold. Adv Exp Med Biol 595:1–75

    Article  Google Scholar 

  34. Rao DS, Sekhara NC, Satyanarayana MN, Srinivasan M (1970) Effect of curcumin on serum and liver cholesterol levels in the rat. J Nutr 100:1307–1315

    CAS  Google Scholar 

  35. Patil TN, Srinivasan M (1971) Hypocholesteremic effect of curcumin in induced hypercholesteremic rats. Indian J Exp Biol 9:167–169

    CAS  Google Scholar 

  36. Keshavarz K (1976) The influence of turmeric and curcumin on cholesterol concentration of eggs and tissues. Poult Sci 55:1077–1083

    Article  CAS  Google Scholar 

  37. Soudamini KK, Unnikrishnan MC, Soni KB, Kuttan R (1992) Inhibition of lipid peroxidation and cholesterol levels in mice by curcumin. Indian J Physiol Pharmacol 36:239–243

    CAS  Google Scholar 

  38. Soni KB, Kuttan R (1992) Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 36:273–275

    CAS  Google Scholar 

  39. Hussain MS, Chandrasekhara N (1992) Effect of turmeric on cholesterol gall-stone induction in mice. Indian J Med Res 96:288–291

    CAS  Google Scholar 

  40. Asai A, Miyazawa T (2001) Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr 131:2932–2935

    CAS  Google Scholar 

  41. Srivastava R, Puri V, Srimal RC, Dhawan BN (1986) Effect of curcumin on platelet aggregation and vascular prostacyclin synthesis. Arzneimittelforschung 36:715–717

    CAS  Google Scholar 

  42. Srivastava KC, Bordia A, Verma SK (1995) Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostag Leukotr Ess 52:223–227

    Article  CAS  Google Scholar 

  43. Deodhar SD, Sethi R, Srimal RC (1980) Preliminary study on antirheumaticactivity of curcumin. Indian J Med Res 71:632–634

    CAS  Google Scholar 

  44. Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano PR (1993) Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg Med Chem 1:415–422

    Article  CAS  Google Scholar 

  45. Li CJ, Zhang LJ, Dezube BJ, Crumpacker CS, Pardee AB (1993) Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc Natl Acad Sci USA 90:1839–1842

    Article  CAS  Google Scholar 

  46. Jordan WC, Drew CR (1996) Curcumin–a natural herb with anti-HIV activity. J Natl Med Assoc 88:333–334

    CAS  Google Scholar 

  47. Mazumder A, Nearnati N, Sunder S, Schulz J, Pertz H, Eich E, Pommier Y (1997) Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. J Med Chem 40:3057–3063

    Article  CAS  Google Scholar 

  48. Barthelemy S, Vergnes L, Moynier M, Guyot D, Labidalle S, Bahraoui E (1998) Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol 149:43–52

    Article  CAS  Google Scholar 

  49. Morikawa T, Matsuda H, Ninomiya K, Yoshikawa M (2002) Medicinal foodstuffs XXIX. Potent protective effects of sesquiterpenes and curcumin from Zedoariae Rhizoma on liver injury induced by D-galactosamine/lipopolysaccharide or tumor necrosis factor-alpha. Biol Pharm Bull 25:627–631

    Article  CAS  Google Scholar 

  50. Oetari S, Sudibyo M, Commandeur JNM, Samboedi R, Vermeulen NPE (1996) Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver. Biochem Pharmacol 51:39–45

    Article  CAS  Google Scholar 

  51. Thapliyal R, Maru GB (2001) Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem Toxicol 39:541–547

    Article  CAS  Google Scholar 

  52. Zhang W, Tan TM, Lim LY (2006) Impact of curcumin induced changes in P-gp and CYP3A4 expression on the pharmacokinetics of peroral celiprolol and midazolam in rats. Drug Metab Dispos 35:110–115

    Article  CAS  Google Scholar 

  53. Bustanji Y, Taha MO, Almasri IM, Al-Ghussein MAS, Mohammad MK, Alkhatib HS (2009) Inhibition of glycogen synthase kinase by curcumin: investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J Enzyme Inhib Med Chem 24:771–778

    Article  CAS  Google Scholar 

  54. Choi H, Chun YS, Shin YJ, Ye SK, Kim MS, Park JM (2008) Curcumin attenuates cytochrome P450 induction in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin by ROS-dependently degrading AhR and ARNT. Cancer Sci 99:2518–2524

    Article  CAS  Google Scholar 

  55. Appiah-Opong R, de Esch I, Commandeur JN, Andarini M, Vermeulen NPE (2008) Structure-activity relationships for the inhibition of recombinant human cytochromes P450 by curcumin analogues. Eur J Med Chem 43:1621–1631

    Article  CAS  Google Scholar 

  56. Firozi PF, Aboobaker VS, Bhattachary RK (1996) Action of curcumin on the cytochrome P450-system catalyzing the activation of aflatoxin B1. Chem Biol Interact 100:41–51

    Article  CAS  Google Scholar 

  57. Liu M, Yuan MG, Luo MX, Bu XZ, Luo HB, Hu XP (2010) Binding of curcumin with glyoxalase I: Molecular docking, molecular dynamics simulations, and kinetics analysis. Biophys Chem 147:28–34

    Article  CAS  Google Scholar 

  58. Sardjiman SS, Reksohadiprodjo MS, Hakim L, van der Goot H, Timmerman H (1997) 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure activity relationship. Eur J Med Chem 32:625–630

    Article  CAS  Google Scholar 

  59. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision.A.02. Gaussian Inc, Wallingford, CT

    Google Scholar 

  60. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithnm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  61. van der Spoel D, van Buuren AR (1996) Peter Tieleman D, Berendsen HJC (1996) Molecular dynamics simulations of peptides from BPTI: A closer look at amide—aromatic interactions. J Biomol NMR 8:229–238

    Article  Google Scholar 

  62. Hermans J, Berendsen HJC, Van Gunsteren WF, Postma JPM (1984) A consistent empirical potential for water-protein interactions. Biopolymers 23:1513–1518

    Article  CAS  Google Scholar 

  63. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  64. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: A package for molecular simulation and trajectory analysis. J Mol Mod 7:306–317

    CAS  Google Scholar 

  65. van Aalten DMF, Bywater R, Findlay JBC, Hendlich M, Hooft RWW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262

    Article  Google Scholar 

  66. Fuhrmans M, Sanders BP, Marrink SJ, de Vries AH (2010) Effects of bundling on the properties of the SPC water mode. Theor Chem Acc 125:335–344

    Article  CAS  Google Scholar 

  67. Berendsen HJC, Grigera JR, Traatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  68. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  69. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  70. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  71. Yao Y, Han WW, Zhou YH, Li ZS, Li Q, Chen XY, Zhong DF (2009) The metabolism of CYP2C9 and CYP2C19 for gliclazide by homology modeling and docking study. Eur J Med Chem 44:854–861

    Article  CAS  Google Scholar 

  72. Ekroos M, Sjögren T (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci USA 103:13682–13687

    Article  CAS  Google Scholar 

  73. Otyepka M, Skopalík J, Anzenbacherová E, Anzenbacher P (2007) What common structural features and variations of mammalian P450s are known to date? Biochim Biophys Acta 1770:376–389

    Article  CAS  Google Scholar 

  74. Sinha N, Smith-Gill SJ (2002) Electrostatics in protein binding and Function. Curr Protein Pept Sc 3:601–614

    Article  CAS  Google Scholar 

  75. Weiner PK, Langridge R, Blaney JM, Schaefer R, Kollman PA (1982) Electrostatic potential molecular surfaces. Proc Natl Acad Sci USA 79:3754–3758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Science Foundation of China (No. 20236010, 20246002, 20376032, 20706029, and 20876073), Jiangsu Science and Technology Department of China (No. BK2008372), and Nanjing University of Technology of China(No. ZK200803). We want to express our thanks for the Reviewers’ valuable suggestions for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolei Zhu or Xiaohua Lu.

Supporting material available

Below is the link to the electronic supplementary material.

Fig. SI-1

Chemical structures of curcumins. (DOC 41 kb)

Fig. SI-2

Most favorable docking conformations of CAs in the binding site of CYP2C9. The curcumin analogues and heme group are shown in sticks. The Fe atom in heme group is represented in ball. Carbon atoms of CAs are colored in magenta (A0), yellow (B0), silvery white (B12), orange (C0), forest (C2). The A, F, F’, G’, G and I helix around CAs are labeled as orange. (DOC 583 kb)

Fig. SI-3

Residue fluctuations (as represented by RMSFs) obtained by averaging atomic fluctuations over the last 4-ns simulation for 2C9/A0 (A), 2C9/B0 (A), 2C9/C0 (A), 2C9/B12 (B), and 2C9/C2 (B) complexes. For comparison, the RMSF of free 2C9 is also shown in (A) and (B). In the two graphs, the highly flexible loops are highlighted. (DOC 194 kb)

Fig. SI-4

The experimental residue B-factors (red curve) of 2C9 obtained from X-ray crystal structure and calculated values of bound 2C9 (black curve) from the last 3ns-MD simulations. (DOC 109 kb)

Fig. SI-5

Snapshots of the hydrogen bond networks in the binding site of 2C9/A0 at 2ns (a), 2.5ns (b), 6ns (c), 8ns (d) and 10ns (e), respectively. Carbon atoms of residues and A0 are colored in green and marine, respectively. Each dotted line (black) indicates a hydrogen bond. (DOC 1017 kb)

Fig. SI-6

Snapshots of the hydrogen bonds in the binding site of CYP2C9-B0 at 0ns, 2ns, 6ns, 8ns, 10ns. Carbon atoms of residues and A0 are colored in green and marine, respectively. Each dotted line (black) indicates a hydrogen bond. (DOC 704 kb)

Fig. SI-7

(a) Two-dimensional schematic representation of hydrogen- bond and hydrophobic interactions for the binding site of CYP2C9/B12. Red balls represent the oxygen atoms of residues or waters. Black balls and blue balls indicate the carbon atoms and nitrogen atoms of residues, respectively. Spiked residues form hydrophobic interactions. (b) The mass-center distances of hydrophobic residues (G296, F476, L362, F100, A103) with one side benzene ring (ben), center cyclopentanone group (pent), one substituted methyl group (CH3) in benzene ring of B12 with time evolution. (DOC 98 kb)

Fig. SI-8

(a) Two-dimensional schematic representation of hydrogen bond and hydrophobic interactions for the binding site of CYP2C9/C2. Red balls represent the oxygen atoms of residues or waters. Black balls and blue balls display the carbon atoms and nitrogen atoms of residues, respectively. Dashed lines represent hydrogen bonds and spiked residues form hydrophobic interactions. (b) The H-bond distances between O13 of C2 and a water (W3328) with time evolution. (c) The mass-center distances of hydrophobic residues (L233, A103, L102, F69, L208, F114) with two terminal benzene rings (ben1 and ben2), one side carbon chain (chain) of C2 versus time. (DOC 130 kb)

Fig. SI-9

Final conformations for the binding sites of B12/CYP2C9 (a), C0/CYP2C9(b), and C2/CYP2C9(c). Carbon atoms of CYP2C9 and ligands are colored in limon and green, respectively. Each dotted line (black) indicates a hydrogen bond. The residues and waters surrounding binding sites are shown in sticks. (DOC 469 kb)

Fig. SI-10

Electrostatic potentials (-1 to +1 kT/e) for binding sites of (a) B12/2C9, (b)C0/2C9 and (c)C2/2C9. Red, blue, and white represent negative, positive, and neutral regions, respectively. (DOC 366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, R., Wang, Y., Zhu, X. et al. Exploration of the binding of curcumin analogues to human P450 2C9 based on docking and molecular dynamics simulation. J Mol Model 18, 2599–2611 (2012). https://doi.org/10.1007/s00894-011-1275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1275-1

Keywords

Navigation