Skip to main content
Log in

Ligand-based 3-D pharmacophore generation and molecular docking of mTOR kinase inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The 3-D structure of the human mTOR kinase domain was modeled based on the crystal structure of PI3Kγ using comparative modeling methods, and the ATP-binding site of mTOR was characterized. The mTOR kinase 3-D model structure is similar to the structure of the PI3Kγ kinase domain, and exhibits great similarity to PI3Kγ at the active site of the kinase. Pharmacophore generation, the docking of mTOR inhibitors, and molecular dynamics (MD) simulations of mTOR–inhibitor docked complexes were carried out in this work. The best pharmacophore model generated from 27 ATP-competitive mTOR inhibitors comprised two hydrogen-bond acceptors, one aromatic ring, and one hydrophobic feature. These 27 inhibitors were docked into the ATP-binding site comprising the DFG motif, and the interactions in each protein–inhibitor complex were characterized. Mapping the pharmacophore model onto the docked inhibitors explained the specificity of the features of the pharmacophore and how they were arranged inside the active site of mTOR kinase. MD studies revealed important structural features, such as the large hydrophobic pocket “HP” and hydrophilic pocket “A1,” and the solvent-exposed hydrophilic pocket “A2” at the active site of mTOR. Our results provide structural models of mTOR–inhibitor complexes and clues that should aid in the design of better mTOR kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–f
Fig. 3a–b
Fig. 4a–b
Fig. 5a–b

Similar content being viewed by others

References

  1. Sarbassov DD, Ali SM, Sabatini DM (2005) Curr Opin Cell Biol 17:596–603

    Article  CAS  Google Scholar 

  2. Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN (2004) Nat Cell Biol 6:1122–1128

    Article  CAS  Google Scholar 

  3. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) Cell 110:163–175

    Article  CAS  Google Scholar 

  4. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Cell 110:177–189

    Article  CAS  Google Scholar 

  5. Yonezawa K, Tokunaga C, Oshiro N, Yoshino K (2004) Biochem Biophys Res Commun 313:437–441

    Article  CAS  Google Scholar 

  6. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Curr Biol 14:1296–1302

    Article  CAS  Google Scholar 

  7. Guertin DA, Sabatini DM (2005) Trends Mol Med 11:353–361

    Article  CAS  Google Scholar 

  8. Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, Diss T, Tirabosco R, Flanagan AM (2009) Br J Cancer 100:1406–1414

    Article  CAS  Google Scholar 

  9. Saunders RN, Metcalfe MS, Nicholson ML (2001) Kidney Int 59:3–16

    Article  CAS  Google Scholar 

  10. Dudkin L, Dilling MB, Cheshire PJ, Harwood FC, Hollingshead M, Arbuck SG, Travis R, Sausville EA, Houghton PJ (2001) Clin Cancer Res 7:1758–1764

    CAS  Google Scholar 

  11. Hidalgo M, Rowinsky EK (2000) Oncogene 19:6680–6686

    Article  CAS  Google Scholar 

  12. Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, Kozuma K, Van Langenhove G, Sousa AG, Falotico R, Jaeger J, Popma JJ, Serruys PW (2001) Circulation 104:2007–2011

    Article  CAS  Google Scholar 

  13. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, García-Echeverría C (2008) Mol Cancer Ther 7:1851–1863

    Article  CAS  Google Scholar 

  14. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA, Friedman LS, Hayes A, Hancox TC, Kugendradas A, Lensun L, Moore P, Olivero AG, Pang J, Patel S, Pergl-Wilson GH, Raynaud F, Robson A, Saghir N, Salphati L, Sohal S, Ultsch MH, Valenti M, Wallweber HJ, Wan NC, Wiesmann C, Workman P, Zhyvoloup A, Zvelebil MJ, Shuttleworth SJ (2008) J Med Chem 51:5522–5532

    Article  CAS  Google Scholar 

  15. Chau CH, Wang W, Figg WD (2008) Cancer Biol Ther 7:1386–1387

    CAS  Google Scholar 

  16. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP (2008) J Clin Invest 118:3065–3074

    CAS  Google Scholar 

  17. Yuan TL, Cantley LC (2008) Oncogene 27:5497–5510

    Article  CAS  Google Scholar 

  18. Menear KA, Gomez S, Malagu K, Bailey C, Blackburn K, Cockcroft XL, Ewen S, Fundo A, Le Gall A, Hermann G, Sebastian L, Sunose M, Presnot T, Torode E, Hickson I, Martin NM, Smith GC, Pike KG (2009) Bioorg Med Chem Lett 19:5898–5901

    Article  CAS  Google Scholar 

  19. García-Martínez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR (2009) Biochem J 421:29–42

    Article  Google Scholar 

  20. Nowak P, Cole DC, Brooijmans N, Bursavich MG, Curran KJ, Ellingboe JW, Gibbons JJ, Hollander I, Hu Y, Kaplan J, Malwitz DJ, Toral-Barza L, Verheijen JC, Zask A, Zhang WG, Yu K (2009) J Med Chem 52:7081–7089

    Article  CAS  Google Scholar 

  21. Zask A, Verheijen JC, Curran K, Kaplan J, Richard DJ, Nowak P, Malwitz DJ, Brooijmans N, Bard J, Svenson K, Lucas J, Toral-Barza L, Zhang WG, Hollander I, Gibbons JJ, Abraham RT, Ayral-Kaloustian S, Mansour TS, Yu K (2009) J Med Chem 52:5013–5016

    Article  CAS  Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  23. Sali A, Potterton L, Yuan F, Van Vlijmen H, Karplus M (1995) Proteins 23:318–326

    Article  CAS  Google Scholar 

  24. Hess B, Kutzner C, Van der Spoel D, Lindahl E (2008) J Chem Theor Comput 4:435–447

    Article  CAS  Google Scholar 

  25. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) J Comput Chem 26:1701–1718

    Article  Google Scholar 

  26. Jones G, Willett P, Glen RC (1995) J Mol Biol 245:43–53

    Article  CAS  Google Scholar 

  27. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  28. Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, Cole DC, Ellingboe J, Ayral-Kaloustian S, Mansour TS, Gibbons JJ, Abraham RT, Nowak P, Zask A (2009) Cancer Res 69:6232–6240

    Article  CAS  Google Scholar 

  29. Schüttelkopf AW, van Aalten DM (2004) Acta Crystallogr D 60:1355–1363

    Google Scholar 

  30. Li J, Zhu X, Yang C, Shi R (2010) J Mol Model 16:789–798

    Article  CAS  Google Scholar 

  31. Lemkul JA, Allen WJ, Bevan DR (2010) J Chem Inf Model 50:2221–2235

    Article  CAS  Google Scholar 

  32. Nosé S (1984) Mol Phys 52:255–268

    Article  Google Scholar 

  33. Hoover WG (1985) Phys Rev A 31:1695–1697

    Article  Google Scholar 

  34. Parrinello M, Rahman A (1981) J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  35. Nośe S, Klein ML (1983) Mol Phys 50:1055–1076

    Article  Google Scholar 

  36. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  37. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) J Mol Biol 7:95–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology (DST), India, for financial support (no. SR/S5/MBD-05/2007). The authors thank the Centre for Modelling Simulation and Design (CMSD), University of Hyderabad, Hyderabad, and the Centre for Development of Advanced Computing (CDAC), Pune, India, for providing access to their computational facilities. KT thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalitha Guruprasad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1a

(DOC 109 kb)

Supplementary Fig. 1b

(DOC 260 kb)

Supplementary Fig. 1c

(DOC 174 kb)

Supplementary Fig. 1d

(DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanneeru, K., Guruprasad, L. Ligand-based 3-D pharmacophore generation and molecular docking of mTOR kinase inhibitors. J Mol Model 18, 1611–1624 (2012). https://doi.org/10.1007/s00894-011-1184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1184-3

Keywords

Navigation