Skip to main content
Log in

Computer-assisted design for paracetamol masking bitter taste prodrugs

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

It is believed that the bitter taste of paracetamol, a pain killer drug, is due to its hydroxyl group. Hence, it is expected that blocking the hydroxy group with a suitable linker could inhibit the interaction of paracetamol with its bitter taste receptor/s and hence masking its bitterness. Using DFT theoretical calculations we calculated proton transfers in ten different Kirby’s enzyme models, 1–10. The calculation results revealed that the reaction rate is linearly correlated with the distance between the two reactive centers (rGM) and the angle of the hydrogen bonding (α) formed along the reaction pathway. Based on these results three novel tasteless paracetamol prodrugs were designed and the thermodynamic and kinetic parameters for their proton transfers were calculated. Based on the experimental t1/2 (the time needed for the conversion of 50% of the reactants to products) and EM (effective molarity) values for processes 1–10 we have calculated the t1/2 values for the conversion of the three prodrugs to the parental drug, paracetamol. The calculated t1/2 values for ProD 1–3 were found to be 21.3 hours, 4.7 hours and 8 minutes, respectively. Thus, the rate by which the paracetamol prodrug undergoes cleavage to release paracetamol can be determined according to the nature of the linker of the prodrug (Kirby’s enzyme model 1–10). Further, blocking the phenolic hydroxyl group by a linker moiety is believed to hinder the paracetamol bitterness.

Conversion of bitterless paracetamol prodrug to bitter paracetamol via an electron transfer process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Chart 1
Scheme 3

Similar content being viewed by others

References

  1. Remington RWJ (2002) The science and practice of pharmacy, 20th edn. Mack publishing company, Easton, pp 1018–1020

    Google Scholar 

  2. Brahmankar DM, Jaiswal SB (1995) Biopharmaceutics & pharmaceutics, 1st edn. Vallabh Prakashan, Delhi, pp 162–165

    Google Scholar 

  3. Kuchekar BS, Badhan AC, Mahajan HS (2003) Mouth dissolving tablets: a novel drug delivery system. Pharma Times 35:7–9

    Google Scholar 

  4. Ley JP (2008) Masking bitter taste by molecules. Chem Precept Chem Precept 1:58–77

    Article  Google Scholar 

  5. Chandreshekar J, Mueller K, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJP (2000) T2Rs function as bitter taste receptor. Cell (Cambridge, Mass) 100:703–711

    Article  Google Scholar 

  6. Scotti L, Scotti MT, Ishiki HM, Ferreira MGP, Emerenciano VP, Menezes CMS, Ferreira EI (2007) Quantitative elucidation of the structure-bittereness relationship of cynaropicrin and grosheimin derivatives. Food Chem 105:77–83

    Article  CAS  Google Scholar 

  7. http://www.assistpainrelief.com/dyn/304/Paracetamol.html

  8. http://www.chemicalbook.com/ChemicalProductProperty_EN_CB6141828.htm

  9. http://www.chemicalall.com/chemicals-name-a/acetanilide.html

  10. Karaman R (2008) Analysis of Menger's spatiotemporal hypothesis. Tetrahedron Lett 49:5998–6002

    Article  CAS  Google Scholar 

  11. Karaman R (2009) A new mathematical equation relating activation energy to bond angle and distance: a key for understanding the role of acceleration in the lactonization of the trimethyl lock system. Bioorg Chem 37:11–25

    Article  CAS  Google Scholar 

  12. Karaman R (2009) Reevaluation of Bruice's proximity orientation. Tetrahedron Lett 50:452–456

    Article  CAS  Google Scholar 

  13. Karaman R (2009) Accelerations in the lactonization of trimethyl lock systems is due to proximity orientation and not to strain effects. Res Lett Org Chem. doi:10.1155/2009/240253, 5 pages

    Google Scholar 

  14. Karaman R (2009) The effective molarity (EM) puzzle in proton transfer reactions. Bioorg Chem 37:106–110

    Article  CAS  Google Scholar 

  15. Karaman R (2009) Cleavage of Menger’s aliphatic amide: a model for peptidase enzyme solely explained by proximity orientation in intramolecular proton transfer. J Mol Struct THEOCHEM 910:27–33

    Article  CAS  Google Scholar 

  16. Karaman R (2009) The gem-disubstituent effect-computational study that exposes the relevance of existing theoretical models. Tetrahedron Lett 50:6083–6087

    Article  CAS  Google Scholar 

  17. Karaman R (2010) Effects of substitution on the effective molarity (EM) for five membered ring-closure reactions- a computational approach. J Mol Struct THEOCHEM 939:69–74

    Article  CAS  Google Scholar 

  18. Karaman R (2009) Analyzing Kirby’s amine olefin – a model for amino-acid ammonia lyases. Tetrahedron Lett 50:7304–7309

    Article  CAS  Google Scholar 

  19. Karaman R (2010) The effective molarity (EM) puzzle in intramolecular ring-closing reactions. J Mol Struct THEOCHEM 940:70–75

    Article  CAS  Google Scholar 

  20. Karaman R (2010) The efficiency of proton transfer in Kirby's enzyme model, a computational approach. Tetrahedron Lett 51:2130–2135

    Article  CAS  Google Scholar 

  21. Karaman R (2010) Proximity vs. strain in ring-closing reactions of bifunctional chain molecules- a computational approach. J Mol Phys 108:1723–1730

    Article  CAS  Google Scholar 

  22. Karaman R (2010) The effective molarity (EM) – a computational approach. Bioorg Chem 38:165–172

    Article  CAS  Google Scholar 

  23. Karaman R (2010) A general equation correlating intramolecular rates with “attack” parameters distance and angle. Tetrahedron Lett 51:5185–5190

    Article  CAS  Google Scholar 

  24. Karaman R, Alfalah S (2010) Multi transition states in SN2 intramolecular reactions. Int Rev Biophys Chem 1:14–23

    Google Scholar 

  25. Karaman R, Pascal R (2010) A computational analysis of intramolecularity in proton transfer reactions. Org Bimol Chem 8:5174–5178

    Article  CAS  Google Scholar 

  26. Karaman R, Hallak H (2010) Anti-malarial pro-drugs- a computational aided design. Chem Biol Drug Des 76:350–360

    Article  CAS  Google Scholar 

  27. Karaman R (2010) Prodrugs of Aza nucleosides based on proton transfer reactions. J Comput Mol Des 24:961–970

    Article  CAS  Google Scholar 

  28. Milstein S, Cohen LA (1970) Concurrent general-acid and general-base catalysis of esterification. J Am Chem Soc 92:4377–4382

    Article  Google Scholar 

  29. Milstein S, Cohen LA (1970) Rate acceleration by stereopopulation control: models for enzyme action. Proc Natl Acad Sci USA 67:1143–1147

    Article  Google Scholar 

  30. Milstein S, Cohen LA (1972) Stereopopulation control. I. Rate enhancement in the lactonizations of o-hydroxyhydrocinnamic acids. J Am Chem Soc 94:9158–9165

    Article  Google Scholar 

  31. Menger FM, Ladika M (1990) Remote enzyme-coupled amine release. J Org Chem 35:3006–3007

    Article  Google Scholar 

  32. Menger FM, Ladika M (1988) Fast hydrolysis of an aliphatic amide at neutral pH and ambient temperature. A peptidase model. J Am Chem Soc 110:6794–6796

    Article  CAS  Google Scholar 

  33. Menger FM (1985) On the source of intramolecular and enzymatic reactivity. Acc Chem Res 18:128–134

    Article  CAS  Google Scholar 

  34. Menger FM, Chow JF, Kaiserman H, Vasquez PC (1983) Directionality of proton transfer in solution. Three systems of known angularity. J Am Chem Soc 105:4996–5002

    Article  CAS  Google Scholar 

  35. Menger FM (1983) Directionality of organic reactions in solution. Tetrahedron 39:1013–1040

    Article  CAS  Google Scholar 

  36. Menger FM, Grosssman J, Liotta DC (1983) Transition-state pliability in nitrogen-to-nitrogen proton transfer. J Org Chem 48:905–907

    Article  CAS  Google Scholar 

  37. Menger FM, Galloway AL, Musaev DG (2003) Relationship between rate and distance. Chem Commun 2370–2371

  38. Menger FM (2005) An alternative view of enzyme catalysis. Pure Appl Chem 77:1873–1876, and references therein

    Article  CAS  Google Scholar 

  39. Bruice TC, Pandit UK (1960) The effect of geminal substitution ring size and rotamer distribution on the intramolecular nucleophilic catalysis of the hydrolysis of monophenyl esters of dibasic acids and the solvolysis of the intermediate anhydrides. J Am Chem Soc 82:5858–5865

    Article  CAS  Google Scholar 

  40. Bruice TC, Pandit UK (1960) Intramolecular models depicting the kinetic importance of “Fit” in enzymatic catalysis. Proc Natl Acad Sci USA 46:402–404

    Article  CAS  Google Scholar 

  41. Brown RF, van Gulick NM (1956) The geminal alkyl effect on the rates of ring closure of bromobutylamines. J Org Chem 21:1046–1049

    Article  CAS  Google Scholar 

  42. Galli C, Mandolini L (2000) The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur J Org Chem 3117–3125 and references therein

  43. Kirby AJ, Parkinson A (1994) Most efficient intramolecular general acid catalysis of acetal hydrolysis by the carboxyl group. J Chem Soc Chem Commun 707–708

  44. Brown CJ, Kirby AJ (1997) Efficiency of proton transfer catalysis. Intramolecular general acid catalysis of the hydrolysis of dialkyl acetals of benzaldehyde. J Chem Soc Perkin Trans 2:1081–1093

    Google Scholar 

  45. Craze G-A, Kirby AJ (1974) The hydrolysis of substituted 2-methoxymethoxybenzoic acids. J Chem Soc Perkin Trans 2:61–66

    Google Scholar 

  46. Barber SE, Dean KES, Kirby AJ (1999) A mechanism for efficient proton-transfer catalysis. Intramolecular general acid catalysis of the hydrolysis of 1-arylethyl ethers of salicylic acid. Can J Chem 792–801

  47. Kirby AJ, de Silva MF, Lima D, Roussev CD, Nome F (2006) Efficient intramolecular general acid catalysis of nucleophilic attack on a phosphodiester. J Am Chem Soc 128:16944–16952

    Article  CAS  Google Scholar 

  48. Kirby AJ, Williams NH (1994) Efficient intramolecular general acid catalysis of enol ether hydrolysis. Hydrogen-bonding stabilization of the transition state for proton transfer to carbon. J Chem Soc Perkin Trans 2:643–648

    Google Scholar 

  49. Kirby AJ, Williams NH (1991) Efficient intramolecular general acid catalysis of vinyl ether hydrolysis by the neighbouring carboxylic acid group. J Chem Soc Chem Commun 1643–1644

  50. Hartwell E, Hodgson DRW, Kirby AJ (2000) Exploring the limits of efficiency of proton-transfer catalysis in models and enzymes. J Am Chem Soc 122:9326–9327

    Article  CAS  Google Scholar 

  51. Kirby AJ (1997) Efficiency of proton transfer catalysis in models and enzymes. Acc Chem Res 30:290–296

    Article  CAS  Google Scholar 

  52. Asaad N, Davies JE, Hodgson DRW, Kirby AJ (2005) The search for efficient intramolecular proton transfer from carbon: the kinetically silent intramolecular general base-catalysed elimination reaction of o-phenyl 8-dimethylamino-1-naphthaldoximes. J Phys Org Chem 18:101–109

    Article  CAS  Google Scholar 

  53. http://www.gaussian.com

  54. Casewit CJ, Colwell KS, Rappe AK (1992) Application of a universal force field to main group compounds. J Am Chem Soc 114:10046–10053

    Article  CAS  Google Scholar 

  55. Murrell JN, Laidler KJ (1968) Symmetries of activated complexes. Trans Faraday Soc 64:371–377

    Article  CAS  Google Scholar 

  56. Muller K (1980) Reaction paths on multidimensional energy hypersurfaces. Angew Chem Int Ed Engl 19:1–13

    Article  Google Scholar 

  57. Cancès MT, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  58. Mennucci B, Tomasi J (1997) Coninuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  59. Mennucci B, Cancès MT, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  60. Tomasi J, Mennucci B, Cancès MT (1997) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct THEOCHEM 464:211–226

    Article  Google Scholar 

  61. Fife TH, Przystas TJ (1979) Intramolecular general acid catalysis in the hydrolysis of acetals with aliphatic alcohol leaving groups. J Am Chem Soc 101:1202–1210

    Article  CAS  Google Scholar 

  62. Kirby AJ (2005) Effective molarities for intramolecular reactions. J Phys Org Chem 18:101–278

    Article  Google Scholar 

Download references

Acknowledgments

The Karaman Co. is thanked for support of our computational facilities. Special thanks are also given to Angi Karaman, Donia Karaman, Rowan Karaman and Nardene Karaman for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafik Karaman.

Electronic supplementary materials

Xyz Cartesian coordinates for the calculated GM and TS optimized structures in processes 1–10 and ProD 1–3.

ESM 1

(DOC 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejaz, H., Karaman, R. & Khamis, M. Computer-assisted design for paracetamol masking bitter taste prodrugs. J Mol Model 18, 103–114 (2012). https://doi.org/10.1007/s00894-011-1040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1040-5

Keywords

Navigation