Skip to main content
Log in

Homology modeling and in silico screening of inhibitors for the substrate binding domain of human Siah2: implications for hypoxia-induced cancers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The three-dimensional (3D) structure of the substrate binding domain (SBD) of human ubiquitin ligase Siah2 (seven in absentia homolog) was constructed based on the homology modeling approach using the Modeller 9v7 program. The molecular dynamics method was utilized to refine the model and it was further assessed by ProSA, three-dimensional structural superposition (3d-SS) and PROCHEK in order to analyze the quality and reliability of the generated model. Furthermore, we predicted the binding pocket of Siah2 and also validated it by both blind and normal docking using a known functional inhibitor, menadione. Using structure-based high-throughput virtual screening, we identified five lead drug-like molecules against the modeled SBD of Siah2 and analyzed its pharmacokinetic properties to identify the potential inhibitors for Siah2. The docking results for menadione and the lead molecules at the ligand binding site of SBD of Siah2 revealed that the residue Ser39 (corresponding to Ser167 in the full-length protein) is consistently involved in strong hydrogen bonding, and plays an important role in phosphorylation and the enhanced activity of Siah2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nakayama K (2009) Cellular signal transduction of the hypoxia response. J Biochem 146:757–765

    Article  CAS  Google Scholar 

  2. Nakayama K, Qi J, Ronai Z (2009) The ubiquitin ligase Siah2 and the hypoxia response. Mol Cancer Res 7:443–451

    Article  CAS  Google Scholar 

  3. House CM, Moller A, Bowtell DD (2009) Siah proteins: novel drug targets in the Ras and hypoxia pathways. Cancer Res 69:8835–8838

    Article  CAS  Google Scholar 

  4. Schnell JD, Hicke L (2003) Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278:35857–35860

    Article  CAS  Google Scholar 

  5. Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, Kadoya T, Erdjument-Bromage H, Tempst P, Frappell PB, Bowtell DD, Ronai Z (2004) Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117:941–952

    Article  CAS  Google Scholar 

  6. House CM, Hancock NC, Moller A, Cromer BA, Fedorov V, Bowtell DD, Parker MW, Polekhina G (2006) Elucidation of the substrate binding site of Siah ubiquitin ligase. Structure 14:695–701

    Article  CAS  Google Scholar 

  7. Polekhina G, House CM, Traficante N, Mackay JP, Relaix F, Sassoon DA, Parker MW, Bowtell DD (2002) Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-alpha signaling. Nat Struct Biol 9:68–75

    Article  CAS  Google Scholar 

  8. Qi J, Nakayama K, Gaitonde S, Goydos JS, Krajewski S, Eroshkin A, Bar-Sagi D, Bowtell D, Ronai Z (2008) The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc Natl Acad Sci USA 105:16713–16718

    Article  CAS  Google Scholar 

  9. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943

    CAS  Google Scholar 

  10. Moller A, House CM, Wong CS, Scanlon DB, Liu MC, Ronai Z, Bowtell DD (2009) Inhibition of Siah ubiquitin ligase function. Oncogene 28:289–296

    Article  CAS  Google Scholar 

  11. Huang J, Tsvetkov L, Qu K, Daniel-Issakani S, Payan DG (2008) Approaches to discovering drugs that regulate E3 ubiquitin ligases. Ernst Schering Found Symp Proc 153–170

  12. Nadeau RJ, Toher JL, Yang X, Kovalenko D, Friesel R (2007) Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. J Cell Biochem 100:151–160

    Article  CAS  Google Scholar 

  13. Shaw AT, Meissner A, Dowdle JA, Crowley D, Magendantz M, Ouyang C, Parisi T, Rajagopal J, Blank LJ, Bronson RT, Stone JR, Tuveson DA, Jaenisch R, Jacks T (2007) Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis. Genes Dev 21:694–707

    Article  CAS  Google Scholar 

  14. Seta KA, Spicer Z, Yuan Y, Lu G, Millhorn DE (2002) Responding to hypoxia: lessons from a model cell line. Sci STKE 146:re11

    Google Scholar 

  15. Khurana A, Nakayama K, Williams S, Davis RJ, Mustelin T, Ronai Z (2006) Regulation of the ring finger E3 ligase Siah2 by p38 MAPK. J Biol Chem 281:35316–35326

    Article  CAS  Google Scholar 

  16. Emerling BM, Platanias LC, Black E, Nebreda AR, Davis RJ, Chandel NS (2005) Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol 25:4853–4862

    Article  CAS  Google Scholar 

  17. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    CAS  Google Scholar 

  18. Shah M, Stebbins JL, Dewing A, Qi J, Pellecchia M, Ronai ZA (2009) Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis. Pigment Cell Melanoma Res 22:799–808

    Article  CAS  Google Scholar 

  19. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–25

    Google Scholar 

  20. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  21. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980

    Article  CAS  Google Scholar 

  22. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Aug:2.3

  23. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  24. Sumathi K, Ananthalakshmi P, Roshan MN, Sekar K (2006) 3dSS: 3D structural superposition. Nucleic Acids Res 34:W128–132

    Google Scholar 

  25. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Google Scholar 

  26. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–410

    Google Scholar 

  27. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447

    Google Scholar 

  28. McDonald NA, Jorgensen WL (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J Phys Chem B 102:8049–8059

    Google Scholar 

  29. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  30. Kontoyianni M, McClellan LM, Sokol GS (2003) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565

    Google Scholar 

  31. Schrodinger, LLC (2005) Glide: molecular docking tool, v.4.0. Schrodinger, LLC, New York

  32. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  33. Jorgensen WL (2006) QikProp, v.3.0. Schrodinger, LLC, New York

  34. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge a generous grant from the Lee Foundation, Singapore, for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loganath Annamalai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anupriya, G., Roopa, K., Basappa, S. et al. Homology modeling and in silico screening of inhibitors for the substrate binding domain of human Siah2: implications for hypoxia-induced cancers. J Mol Model 17, 3325–3332 (2011). https://doi.org/10.1007/s00894-011-1025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1025-4

Keywords

Navigation