Skip to main content
Log in

Sensitivity and the available free space per molecule in the unit cell

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Invoking the known link between impact sensitivity and compressibility, we have expanded upon an earlier preliminary study of the significance of the available free space per molecule in the unit cell, ΔV. We express ΔV as Veff – Vint, where Veff corresponds to zero free space, Veff = molecular mass/density. Vint is the intrinsic gas phase molecular volume. We demonstrate that Vint can be appropriately defined as the volume enclosed by the 0.003 au contour of the molecule’s electronic density; this produces packing coefficients that have the range and average value found crystallographically. Measured impact sensitivities show an overall tendency to increase as ΔV becomes larger. For nitramines, the dependence upon ΔV is rather weak; we interpret this as indicating that a single overriding factor dominates their initiation mechanism, e.g., N-NO2 rupture. (An analogous situation appears to hold for many organic azides.) In addition to the conceptual significance of identifying ΔV as a factor in impact sensitivity, the present results allow rough estimates of relative sensitivities that are not known.

Impact sensitivities, h 50, plotted against available free space per molecule in the unit cell, ΔV, for 7 nitramines (left) and 14 non-nitramines (right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Iyer S, Slagg N (1988) In: Liebman JF, Greenberg A (eds) Structure and reactivity. VCH, New York, Ch 7

    Google Scholar 

  2. Storm CB, Stine JR, Kramer JF (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer, Dordrecht, Ch 27

    Google Scholar 

  3. Meyer R, Köhler J, Hornburg A (2007) Explosives, 6th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Zeman S, Friedl Z, Koci J, Pelikan V, Majzlik J (2006) Centr Europ J Energ Mater 3:27–44

    CAS  Google Scholar 

  5. Zeman S, Friedl Z, Koci J (2007) Centr Europ J Energ Mater 4:23–31

    CAS  Google Scholar 

  6. Brill TB, James K (1993) Chem Rev 93:2667–2692

    Article  CAS  Google Scholar 

  7. Sućeska M (1995) Test methods for explosives. Springer, New York

    Book  Google Scholar 

  8. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  9. Dlott DD (2003) In: Politzer P, Murray JS (eds) Energetic materials, part 2. Detonation, combustion. Elsevier, Amsterdam, Ch 6

    Google Scholar 

  10. Doherty RM, Watt DS (2008) Propellants Explos Pyrotech 33:4–13

    Article  CAS  Google Scholar 

  11. Kamlet MJ (1976) Proc 6th Symp (Internat) Deton, Report No ACR 221, Office of Naval Research, p 312

  12. Kamlet MJ, Adolph HG (1979) Propellants Explos 4:30–34

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS (2003) In: Politzer P, Murray JS (eds) Energetic materials, part 2. Detonation, combustion. Elsevier, Amsterdam, Ch 1

    Google Scholar 

  14. Zeman S (2007) Struct Bond 125:195–271

    Article  CAS  Google Scholar 

  15. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  16. Brill TB, Oyumi Y (1986) J Phys Chem 90:2679–2682

    Article  CAS  Google Scholar 

  17. Oyumi Y, Brill TB (1988) Propellants Explos Pyrotech 13:69–73

    Article  CAS  Google Scholar 

  18. Stewart PH, Jeffries JM, Zellweger JM, McMillen DF, Golden DM (1989) J Phys Chem 93:3557–3563

    Article  CAS  Google Scholar 

  19. Politzer P, Murray JS, Lane P, Sjoberg P, Adolph HG (1991) Chem Phys Lett 181:78–82

    Article  CAS  Google Scholar 

  20. Kohno Y, Maekawa K, Tsuchioka T, Hashizume T, Imamura A (1994) Combust Flame 96:343–350

    Article  CAS  Google Scholar 

  21. Kohno Y, Ueda K, Imamura A (1996) J Phys Chem 100:4701–4712

    Article  CAS  Google Scholar 

  22. Oxley JC (2003) In: Politzer P, Murray JS (eds) Energetic materials, part 1. Decomposition, crystal and molecular properties. Elsevier, Amsterdam, Ch 1

    Google Scholar 

  23. Storm CB, Ryan RR, Ritchie JP, Hall JH, Bachrach SM (1989) J Phys Chem 93:1000–1007

    Article  CAS  Google Scholar 

  24. Politzer P, Grice ME, Seminario JM (1997) Int J Quantum Chem 61:389–392

    Article  CAS  Google Scholar 

  25. Murray JS, Lane P, Göbel M, Klapötke TM, Politzer P (2009) Theor Chem Acc 124:355–363

    Article  CAS  Google Scholar 

  26. Gindulyte A, Massa A, Huang L, Karle J (1999) J Phys Chem A 103:11045–11051

    Article  CAS  Google Scholar 

  27. Liu W-G, Zybin SV, Dasgupta S, Klapötke TM, Goddard WA III (2009) J Am Chem Soc 131:7490–7491

    Article  CAS  Google Scholar 

  28. Shackelford SA (2008) Centr Europ J Energ Mater 5:75–101

    CAS  Google Scholar 

  29. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  30. Tsai DH, Armstrong RW (1994) J Phys Chem 98:10997–11000

    Article  CAS  Google Scholar 

  31. Politzer P, Boyd S (2002) Struct Chem 13:105–113

    Article  CAS  Google Scholar 

  32. Dick JJ (1984) Appl Phys Lett 44:859–861

    Article  CAS  Google Scholar 

  33. Kunz AB (1996) Mater Res Soc Symp Proc 418:287–292

    Article  CAS  Google Scholar 

  34. Eckhardt CJ, Gavezzotti A (2007) J Phys Chem B 111:3430–3437

    Article  CAS  Google Scholar 

  35. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  36. Politzer P, Murray JS (1998) J Mol Struct THEOCHEM 425:107–114

    Article  Google Scholar 

  37. Murray JS, Politzer P (2010) Wiley Interdisciplinary Reviews, in press

  38. Qiu L, Xiao H, Gong X, Ju X, Zhu W (2007) J Hazard Mater 141:280–288

    Article  CAS  Google Scholar 

  39. Rice BM, Hare JJ, Byrd EFC (2007) J Phys Chem A 111:10874–10879

    Article  CAS  Google Scholar 

  40. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  41. Frisch MJ et al. (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  42. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  43. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  44. Hammerl A, Klapötke TM, Mayer P, Weigand JJ (2005) Propellants Explos Pyrotech 30:17–26

    Article  CAS  Google Scholar 

  45. Klapötke TM, Martin F, Sproll S, Stierstorfer J (2009) Proc 12th Seminar on new trends in research of energetic materials, part I. University of Pardubice, Czech Republic, pp 327–340

    Google Scholar 

  46. Lewis JP, Sewell TD, Evans RB, Voth GA (2000) J Phys Chem B 104:1009–1013

    Article  CAS  Google Scholar 

  47. Herrmann M, Engel W, Eisenreich N (1992) Propellants Explos Pyrotech 17:190–195

    Article  CAS  Google Scholar 

  48. Sikder AK, Sikder N (2004) J Hazard Mater A112:1–15

    Article  Google Scholar 

  49. Politzer P, Lane P, Murray JS (2011) Centr Europ J Energ Mat 8:39–52

    Google Scholar 

Download references

Acknowledgments

MP and PV acknowledge the support of this work by the Ministry of Education, Youth and Sports of the Czech Republic as a part of its research projects Nos. MSM0021620835 (MP) and MSM0021627501 (PV), respectively. PP, JSM and MCC appreciate the support of the Defense Threat Reduction Agency, Contract No. HDTRA1-07-1-0002, Project Officer Dr. William Wilson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pospíšil, M., Vávra, P., Concha, M.C. et al. Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17, 2569–2574 (2011). https://doi.org/10.1007/s00894-010-0953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0953-8

Keywords

Navigation