Skip to main content
Log in

Nucleotide docking: prediction of reactant state complexes for ribonuclease enzymes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ribonuclease enzymes (RNases) play key roles in the maturation and metabolism of all RNA molecules. Computational simulations of the processes involved can help to elucidate the underlying enzymatic mechanism and is often employed in a synergistic approach together with biochemical experiments. Theoretical calculations require atomistic details regarding the starting geometries of the molecules involved, which, in the absence of crystallographic data, can only be achieved from computational docking studies. Fortunately, docking algorithms have improved tremendously in recent years, so that reliable structures of enzyme–ligand complexes can now be successfully obtained from computation. However, most docking programs are not particularly optimized for nucleotide docking. In order to assist our studies on the cleavage of RNA by the two most important ribonuclease enzymes, RNase A and RNase H, we evaluated four docking tools—MOE2009, Glide 5.5, QXP-Flo+0802, and Autodock 4.0—for their ability to simulate complexes between these enzymes and RNA oligomers. To validate our results, we analyzed the docking results with respect to the known key interactions between the protein and the nucleotide. In addition, we compared the predicted complexes with X-ray structures of the mutated enzyme as well as with structures obtained from previous calculations. In this manner, we were able to prepare the desired reaction state complex so that it could be used as the starting structure for further DFT/B3LYP QM/MM reaction mechanism studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–b
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–c
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raines RT (1998) Chem Rev 98:1045–1065

    Article  CAS  Google Scholar 

  2. Wu HJ, Lima WF, Crooke ST (2001) J Biol Chem 276:23547–23553

    Article  CAS  Google Scholar 

  3. Hughes SH, Arnold E, Hostomska Z (1998) In: Crouch RJ, Toulme JJ (eds) Ribonuclease H. Inserm, Paris, pp 195–224

    Google Scholar 

  4. Schatz O, Cromme FV, Gruningerleitch F, Legrice SFJ (1989) Febs Lett 257:311–314

    Article  CAS  Google Scholar 

  5. Tanese N, Goff SP (1988) Proc Natl Acad Sci USA 85:1777–1781

    Google Scholar 

  6. Kroemer RT, Vulpetti A, McDonald JJ, Rohrer DC, Trosset JY, Giordanetto F, Cotesta S, McMartin C, Kihlen M, Stouten PFW (2004) J Chem Inf Comput Sci 44:871–881

    CAS  Google Scholar 

  7. Alisaraie L, Haller LA, Fels G (2006) J Chem Inf Model 46:1174–1187

    Article  CAS  Google Scholar 

  8. Li YZ, Shen J, Sun XG, Li WH, Liu GX, Tang Y (2010) J Chem Inf Model 50:1134–1146

    Article  CAS  Google Scholar 

  9. Sandor M, Kiss R, Keseru GM (2010) J Chem Inf Model 50:1165–1172

    Article  CAS  Google Scholar 

  10. van Dijk ADJ, de Vries SJ, Dominguez C, Chen H, Zhou HX, Bonvin A (2005) Proteins Struct Funct Bioinf 60:232–238

    Article  Google Scholar 

  11. van Dijk M, Bonvin A (2008) Nucleic Acids Res 36:e88

    Article  Google Scholar 

  12. van Dijk M, van Dijk ADJ, Hsu V, Boelens R, Bonvin A (2006) Nucleic Acids Res 34:3317–3325

    Article  Google Scholar 

  13. Issur M, Despins S, Bougie I, Bisaillon M (2009) Nucleic Acids Res 37:3714–3722

    Article  CAS  Google Scholar 

  14. Kamphuis MB, Bonvin A, Monti MC, Lemonnier M, Munoz-Gomez A, van den Heuvel RHH, Diaz-Orejas R, Boelens R (2006) J Mol Biol 357:115–126

    Article  CAS  Google Scholar 

  15. Suydam IT, Levandoski SD, Strobel SA (2010) Biochemistry 49:3723–3732

    Article  CAS  Google Scholar 

  16. Hostomska Z, Matthews D, Hostomsky Z (1993) J Acq Im Def Syn Hum Ret 6:673–673

    Google Scholar 

  17. Schrödinger LLC (2009) Macromodel v.9.7, Glide v.5.5, Maestro v.9.0, LigPrep v.2.3. Schrödinger LLC, New York

  18. McMartin C, Bohacek RS (1997) J Comput Aided Mol Des 11:333–344

    Article  CAS  Google Scholar 

  19. Morris GM, Goodsell DS, Huey R, Lindstrom W, Hart WE, Kurowski S, Halliday S, Belew R, Olson AJ (2007) Autodock 4.0. http://autodock.scripps.edu/

  20. Fedoroff OY, Salazar M, Reid BR (1993) J Mol Biol 233:509–523

    Article  CAS  Google Scholar 

  21. Katayanagi K, Okumura M, Morikawa K (1993) Proteins Struct Funct Genet 17:337–346

    Article  CAS  Google Scholar 

  22. Nowotny M, Gaidamakov SA, Ghirlando R, Cerritelli SM, Crouch RJ, Yang W (2007) Mol Cell 28:513–513

    Article  CAS  Google Scholar 

  23. Research Collaboratory for Structural Bioinformatics (2010) RCSB protein data bank. Rutgers/SDSC, Piscataway/La Jolla

  24. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  25. Boerema DJ, Tereshko VA, Kent SBH (2008) Biopolymers 90:278–286

    Article  CAS  Google Scholar 

  26. Zegers I, Maes D, Daothi MH, Poortmans F, Palmer R, Wyns L (1994) Protein Sci 3:2322–2339

    Article  CAS  Google Scholar 

  27. Wladkowski BD, Krauss M, Stevens WJ (1995) J Am Chem Soc 117:10537–10545

    Article  CAS  Google Scholar 

  28. Elsässer B, Valiev M, Weare JH (2009) J Am Chem Soc 131:3869–3871

    Article  Google Scholar 

  29. Mueller GA, Pari K, DeRose EF, Kirby TW, London RE (2004) Biochemistry 43:9332–9342

    Article  CAS  Google Scholar 

  30. Onufriev A, Case DA, Bashford D (2002) J Comput Chem 23:1297–1304

    Article  CAS  Google Scholar 

  31. Eisenschitz R, London F (1930) Z Phys A Hadrons Nuclei 60:491–527

    Google Scholar 

  32. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  33. Andrew CR, Martin Craig TP (2009) ProFit v.3.1. http://www.bioinf.org.uk/software/profit/

  34. McLachlan AD (1982) Acta Crystallogr A 38:871–873

    Article  Google Scholar 

  35. Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M (1999) Bioinformatics 15:327–332

    Article  CAS  Google Scholar 

  36. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

  37. Record MT, Lohman TM, Dehaseth P (1976) J Mol Biol 107:145–158

    Article  CAS  Google Scholar 

  38. Nowotny M, Gaidamakov SA, Crouch RJ, Yang W (2005) Cell 121:1005–1016

    Article  CAS  Google Scholar 

  39. Elsässer B, Fels G (2010) Phys Chem Chem Phys 12:11081–11088

    Article  Google Scholar 

Download references

Acknowledgments

The QM/MM optimization of the generated complexes was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitta Elsässer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsässer, B., Fels, G. Nucleotide docking: prediction of reactant state complexes for ribonuclease enzymes. J Mol Model 17, 1953–1962 (2011). https://doi.org/10.1007/s00894-010-0900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0900-8

Keywords

Navigation