Skip to main content
Log in

A neural networks study of quinone compounds with trypanocidal activity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T5 (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO−1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.

Compound component maps, where each map shows the calculated descriptors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siles R, Chen S, Zhou M, Pinney KG, Trawick ML (2006) Bioorg Med Chem Lett 16:4405–4409

    Article  CAS  Google Scholar 

  2. Batista R, Humberto JL, Chiari E, Oliveira AB (2007) Bioorg Med Chem Lett 15:381–391

    Article  CAS  Google Scholar 

  3. Bauer H, Massey V, Arscott LD, Schirmer RH, Ballou DP, Williams CH (2003) J Biol Chem 278:33020–33028

    Article  CAS  Google Scholar 

  4. Li ZL, Fennie MW, Ganem B, Hancock MT, Kobaslija M, Rattendi D, Bacchi CJ, O’Sullivan M (2001) Bioorg Med Chem Lett 11:251–254

    Article  CAS  Google Scholar 

  5. del Corral JMM, Castro MA, Oliveira AB, Gualberto SA, Cuevas C, San Feliciano A (2006) Bioorg Med Chem 14:7231–7240

    Article  Google Scholar 

  6. Winkler DA, Burden FR (2004) Drug Discov Today 2:104–111

    Article  CAS  Google Scholar 

  7. Katritzky AR, Pacureanu LM, Slavov S, Dobchev DA, Karelson M (2006) Bioorg Med Chem 14:6933–6939

    Article  CAS  Google Scholar 

  8. Fernández M, Caballero J (2006) Bioorg Med Chem 14:280–294

    Article  Google Scholar 

  9. Selzer P, Ertl PJ (2006) Chem Inf Model 46:2319–2323

    Article  CAS  Google Scholar 

  10. Goulart MOF, Zani CL, Tonholo J, Freitas LR, de Abreu FC, Oliveira AB, Raslan DS, Starling S, Chiari E (1997) Bioorg Med Chem Lett 7:2043–2048

    Article  CAS  Google Scholar 

  11. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  12. El-Azhary AA, Sutter HU (1996) J Phys Chem 100:15056–15063

    Article  CAS  Google Scholar 

  13. Turecek F (1998) J Phys Chem A 102:4703–4713

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreyen Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Octhterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al- Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Pittsburgh PA

    Google Scholar 

  15. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  16. Wang R, Fu Y, Lai L (1997) J Inf Comput Sci 37:615–621

    Article  CAS  Google Scholar 

  17. Todeschini R, Gramatica P (1998) Perspect Drug Discov Des 9:355–380

    Article  Google Scholar 

  18. Skrobot VL, Castro EVR, Pereira RCC, Pasa VMD, Fortes ICP (2007) Energy Fuels 21:3394–3400

    Article  CAS  Google Scholar 

  19. González-Arjona D, López-Pérez A, González AG (2002) Talanta 56:79–90

    Article  Google Scholar 

  20. Molfetta FA, Bruni AT, Honório KM, da Silva ABF (2005) Eur J Med Chem 40:329–338

    Article  CAS  Google Scholar 

  21. Bykov VA, Popov PI, Pleteneva TV, Anisimova IE, Syroeshkin AV (2004) Pharm Chem J 38:243–249

    Article  CAS  Google Scholar 

  22. Kubinyi H, Folkers G, Martin YC (2002) 3D QSAR in drug design, vol 2. Kluwer, New York

    Google Scholar 

  23. Marini F, Zupan J, Magri AL (2005) Anal Chim Acta 544:306–314

    Article  CAS  Google Scholar 

  24. Kawakami J, Hoshi K, Ishiyama A, Miyagishima S, Sato K (2004) Chem Pharm Bull 52:751–755

    Article  CAS  Google Scholar 

  25. Santo LLD, Galvão DS (1999) J Mol Struct (THEOCHEM) 464:273–279

    Article  CAS  Google Scholar 

  26. Barone PMVB, Camilo A, Galvão DS (1996) Phys Rev Lett 77:1186–1189

    Article  CAS  Google Scholar 

  27. Braga RS, Barone PMVB, Galvão DS (1999) J Mol Struct (THEOCHEM) 464:257–266

    Article  CAS  Google Scholar 

  28. Rothenberg G, Sasson Y (1999) Tetrahedron 55:561–568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge CAPES, CNPq and FAPESP (Brazilian Agencies) for the financial support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albérico Borges Ferreira da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Molfetta, F.A., Angelotti, W.F.D., Romero, R.A.F. et al. A neural networks study of quinone compounds with trypanocidal activity. J Mol Model 14, 975–985 (2008). https://doi.org/10.1007/s00894-008-0332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0332-x

Keywords

Navigation